

JACOBS SCHOOL OF ENGINEERING

Prompt Sliders for Fine-Grained Control, Editing and Erasing of Concepts in Diffusion Models

Deepak Sridhar

Nuno Vasconcelos

SVCL **₹**UCSD

Image Synthesis: Limitations

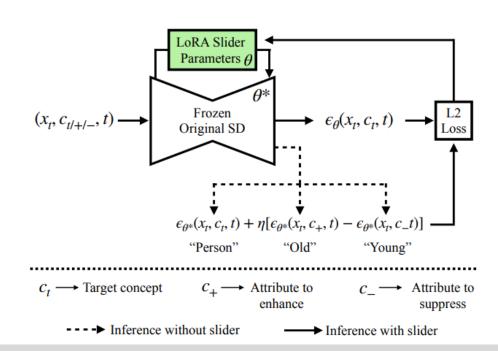
Current Text-to-Image (T2I) models have

- limited control over fine-grained attributes
 - age, emotions etc.

- difficulty in editing complex features
 - weather, human hands and fingers etc.

Concept Sliders¹: LoRA Adapters for Precise Control in Diffusion

- Introduced a method to train LoRA adapters to learn dedicated direction of a particular concept.
- This is done with a set of positive prompts and negative prompts.
- Increases the likelihood of attributes c⁺ and reduces the likelihood of attribute c⁻ in an image x when conditioned on the target c_t.



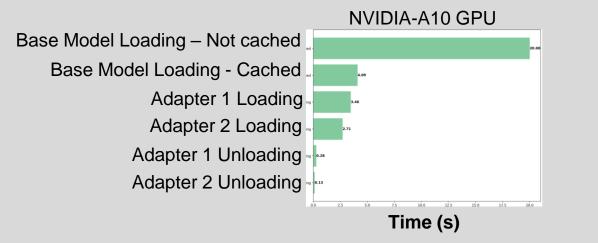
¹Gandikota et. al., Concept Sliders: LoRA Adaptors for Precise Control in Diffusion Models, ECCV 2024

Concept Sliders: A Solution, But Is It Perfect?

• Additional parameters \rightarrow Increased model complexity \rightarrow Increased memory

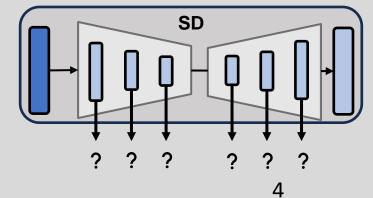
SVCL **₹**UCSD

- LoRA sliders require millions of parameters to train.
- Loading/unloading adapters → Increased inference time²



- Model-specific retraining (SD-XL, SD v1.5) → Less flexibility
 - Requires identifying optimal adapter layers in the model

²https://huggingface.co/blog/lora-adapters-dynamic-loading#loading-figures



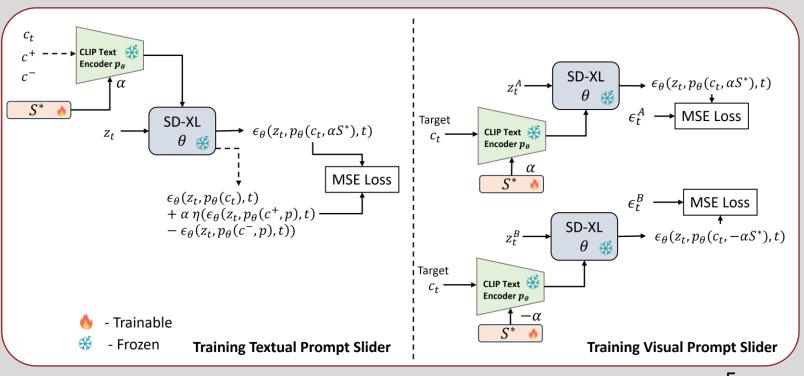
Introducing Prompt Sliders

• A textual inversion method to learn concepts via text embeddings.

$$\epsilon_t(\alpha) = \epsilon_{\theta}(z_t, p_{\theta}(c_t), t) + \alpha \eta \sum_{\{p \in P\}} (\epsilon_{\theta}(z_t, p_{\theta}(c^+, p), t) - \epsilon_{\theta}(z_t, p_{\theta}(c^-, p), t))$$

 $S^*(\alpha) = argmin_{S} E_{\{z \sim F(x) \mid y \in N(0,1),t\}} |\epsilon_t(\alpha) - \epsilon_{\theta} (z_t, p_{\theta}(y, S), t)|_2^2$

• Given a target concept c_t , we propose to learn the corresponding textual embedding $S^* \in R^d$ (d =768 for CLIP text encoder) that encourages the distribution of c_t to exhibit more positive attributes c^+ and fewer negative attributes c^- .



SVCL ₹UCSD

Prompt Sliders

Cross-Model Flexibility

1.

2.

3.

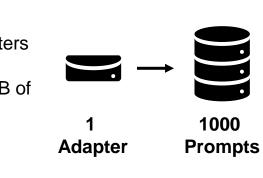
- 1. No need for additional parameters like LoRAs.
- 2. Each concept requires only 3KB of storage

Generalizable across models

sharing the same text encoder

For example, SD v1.4, v1.5, SD-XL

Retains performance across models



Tokens 🔥

*

SD-XL

CLIP

Text Encoder

SD-v1.5

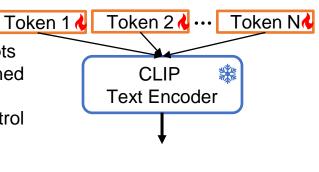
SD-v1.4

Faster inference

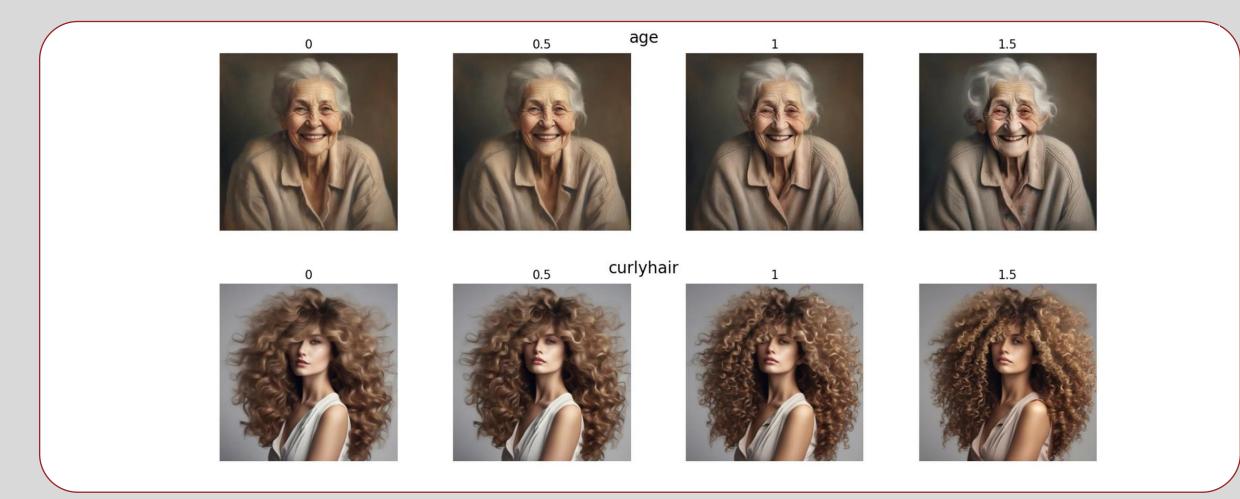
- 1. Overcomes the issue of loading/unloading adapters
- 2. 30% speed improvement over adapters
- 3. Adjust concept strength via text embedding weights

No Merging Issues

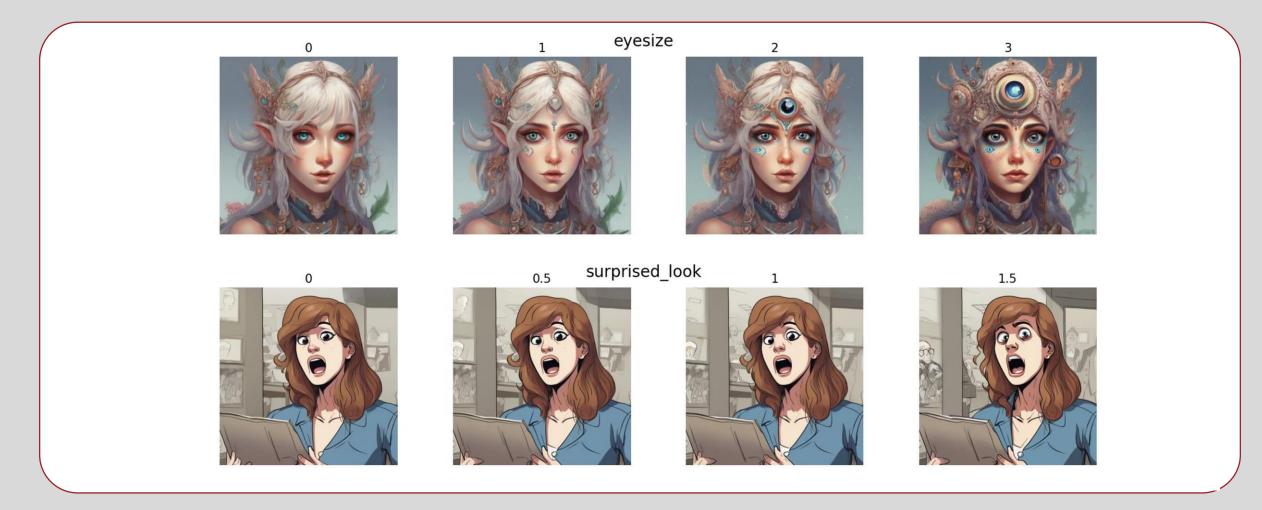
- 1. Combine multiple concepts easily by appending learned tokens to the prompt
- 2. Retains independent control



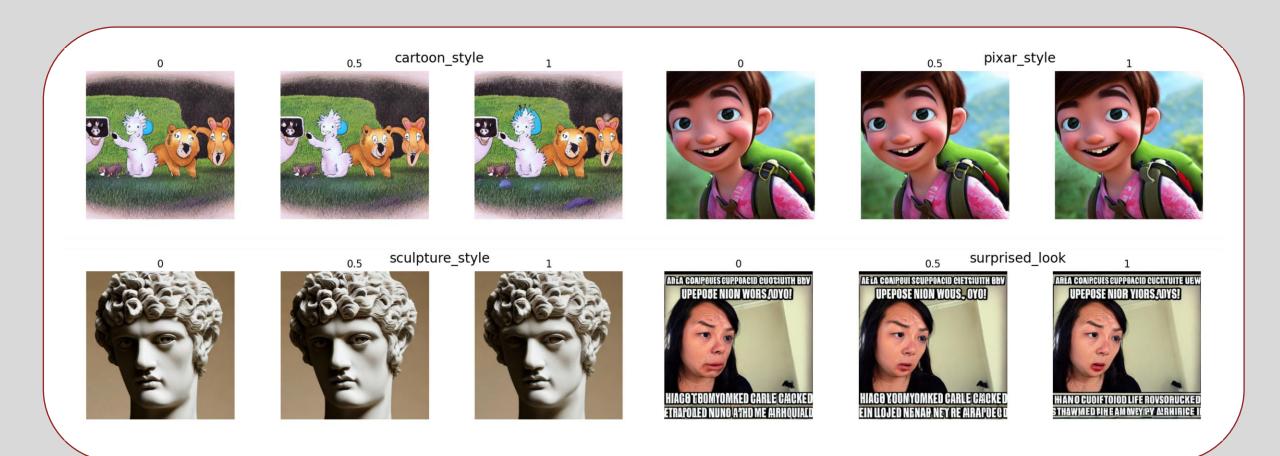
Prompt Sliders for Various Concepts



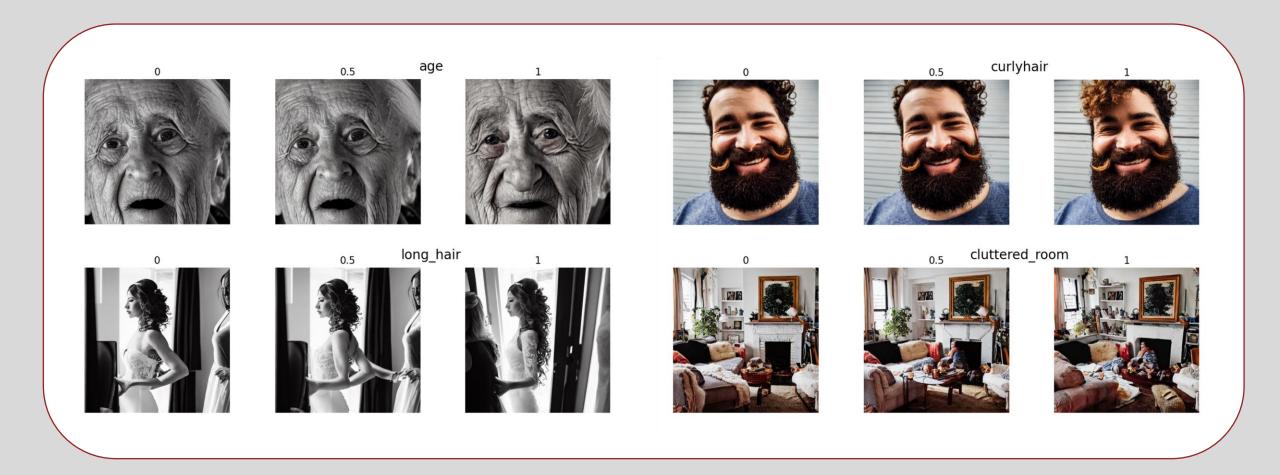
Prompt Sliders for Various Concepts



Results: Transfer to SD-v1.4 from SD-XL



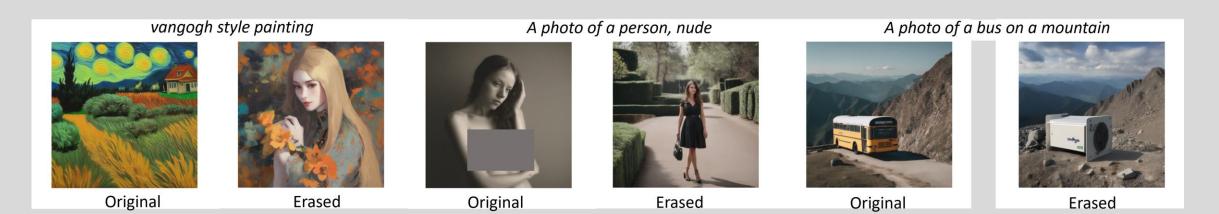
Results: Transfer to SD-v1.5 from SD-XL



Erasing Concepts with Prompt Sliders

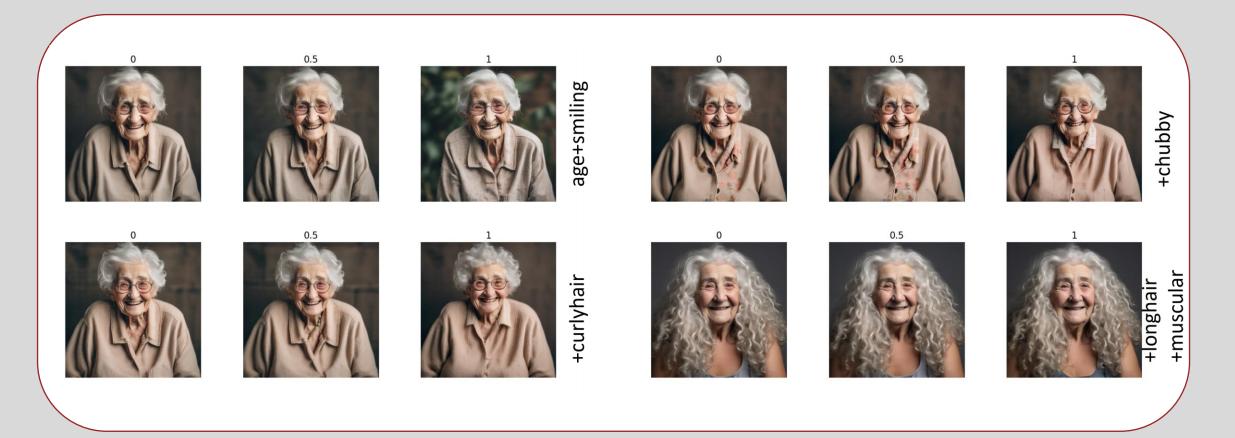
• Using a negative α allows one to erase a concept instead of enhancing them. Formally,

$$\epsilon_t(\alpha) = \epsilon_\theta(z_t, p_\theta(c_t), t) - \alpha \eta \sum_{\{p \in P\}} (\epsilon_\theta(z_t, p_\theta(c^+, p), t) - \epsilon_\theta(z_t, p_\theta(c^-, p), t))$$



Composition of Prompt Sliders

Prompt sliders are simple to compose by just appending the learned tokens to the input prompt.



Comparison of Inference times and Prompt Slider transfers

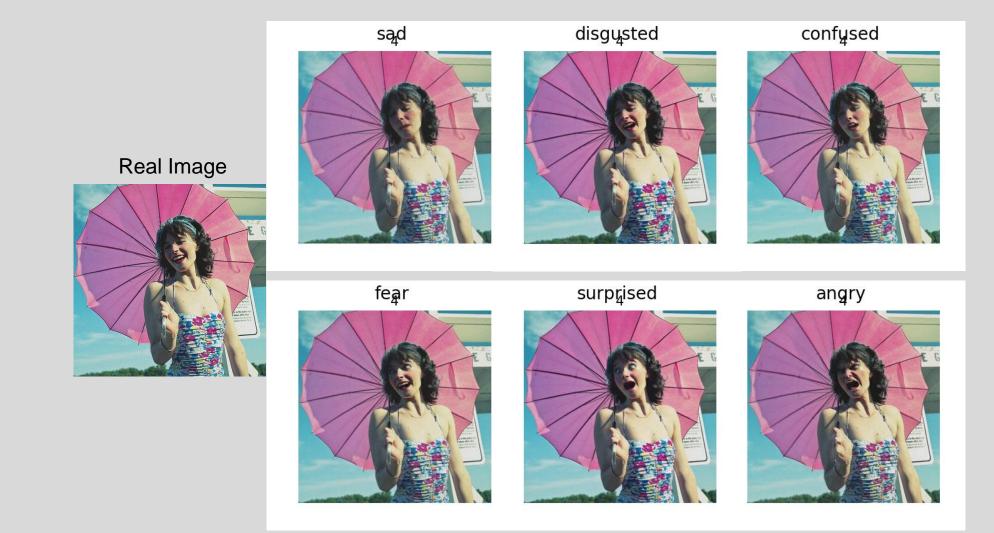
• Does not increase the inference time from the baseline without prompt sliders.

- Prompt Sliders enhance image-text alignment, as shown by improved CLIP scores.
- Transferring Prompt Sliders from SD-XL to SD-1.5 retains performance similar to training from scratch on SD-1.5.

Comparison with Concept Sliders

SVCL **₹**UCSD

Emotion Prompt Sliders Applied on a Real Image with Inversion³



³Brack et. al., LEDITS++: Limitless Image Editing using Text-to-Image Models, CVPR 2024

SVCL **₹**UCSD

Concept Prompt Sliders Applied on a Real Image with Inversion³

³Brack et. al., LEDITS++: Limitless Image Editing using Text-to-Image Models

Next Steps...

- Limitations
 - Image Quality deteriorates or diverges from the original image at higher guidance strength α
 - Cannot cover concepts absent in the original diffusion model without using reference images.
- Future research
 - Improve performance at higher guidance strength
 - Learn multiple concepts together with disentanglement

Thank You

Questions?

Project Page

