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Image Synthesis: Limitations

Current Text-to-Image (T21) models have

* limited control over fine-grained attributes * difficulty in editing complex features
e age, emotions etc. * weather, human hands and fingers etc.

InstructPix2Pix Edits

Real Image Winter weather
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Concept Sliders!: LoRA Adapters for Precise Control in Diffusion

* |Introduced a method to train LoRA adapters to

learn dedicated direction of a
particular concept.

* This is done with a set of positive prompts and
negative prompts.

* |Increases the likelihood of attributes ¢* and
reduces the likelihood of attribute ¢~ in an
image x when conditioned on the target c;.

“Smiling”
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lGandikota et. al., Concept Sliders: LoRA Adaptors for
Precise Control in Diffusion Models, ECCV 2024



Concept Sliders: A Solution, But Is It Perfect?

* Additional parameters = Increased model complexity =2 Increased memory E
* LoRA sliders require millions of parameters to train. -

I

* Loading/unloading adapters—> Increased inference time?

NVIDIA-A10 GPU
Base Model Loading — Not cached |

Base Model Loading - Cached |
Adapter 1 Loading -
Adapter 2 Loading -

Adapter 1 Unloading - -

Adapter 2 Unloading -+

Time(s) - = ~
* Model-specific retraining (SD-XL, SD v1.5) = Less flexibility

* Requires identifying optimal adapter layers in the model
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2https://huggingface.co/blog/lora-adapters-dynamic-loading#loading-figures
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Introducing Prompt Sliders

A textual inversion method to learn concepts via text embeddings.

S*(a) = argming Eg, gy ye~no)e | €6(@) — €9 (26, 09y, S), )15

€c(a) = €g(zs,pe(ce),t) +an

Given a target concept ¢;, we
propose to learn the
corresponding textual
embedding S* € R? (d =
768 for CLIP text encoder)
that encourages the
distribution of ¢; to exhibit
more positive attributes c*
and fewer negative attributes
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Prompt Sliders

-

Efficient and Lightweight

o

1. No need for additional parameters
like LORAs. —
2. Each concept requires only 3KB of
storage
1 1000
\ Adapter Prompt)
f - Tokens 4 \
Cross-Model Flexibility 4
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Generalizable across models
sharing the same text encoder

For example, SD v1.4, v1.5, SD-XL

Retains performance across models
» v
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Factor Graph Diffusion with Negative Guidance for Improved 2D/3D synthesis

Faster inference

Overcomes the issue of loading/unloading
adapters
30% speed improvement over adapters

Adjust concept strength via text embedding
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No Merging Issues

Token 14| Token24j---| Token N&/
Combine multiple concepts
easily by appending learned CLIP 3%
tokens to the prompt Text Encoder

Retains independent control
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Prompt Sliders for Various Concepts

-

0.5 age

0 0.5 curlyhair
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Prompt Sliders for Various Concepts

1 eyesize

0 o5  surprised_look
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Results: Transfer to SD-v1.4 from SD-XL
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Results: Transfer to SD-v1.5 from SD-XL

curlyhair
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Erasing Concepts with Prompt Sliders

* Using a negative a allows one to erase a concept instead of enhancing them. Formally,

e(@) = €9 (20, pp(c), ) —an ) (€g(zepa(ctp),6) = €o(ze,Po(c,P), )
{(PE P}

vangogh style painting A photo of a person, nude A photo of a bus on a mountain

Original Erased Original Erased Original Erased
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Composition of Prompt Sliders

Prompt sliders are simple to compose by just appending the learned tokens to the input prompt.

age+smiling

+curlyhair
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Comparison of Inference times and Prompt Slider transfers

Inference Time Comparison
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Prompt Sliders enhance image-text
alignment, as shown by improved CLIP

scores.

Transferring Prompt Sliders from SD-XL to
SD-1.5 retains performance similar to
training from scratch on SD-1.5.

Does not increase the inference time from
the baseline without prompt sliders.
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Comparison with Concept Sliders

~

clay_style winter_weather chubby suprised, look smiling \

Concept Sliders

Prompt Sliders
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Emotion Prompt Sliders Applied on a Real Image with Inversion3

3Brack et. al., LEDITS++: Limitless Image Editing using Text-to-Image Models, CVPR 2024
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Concept Prompt Sliders Applied on a Real Image with Inversion3

Borderlands

PR E

Sunglasses

3Brack et. al., LEDITS++: Limitless Image Editing using Text-to-Image Models
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Next Steps...

. Limitations

- Image Quality deteriorates or diverges from the original image at higher guidance
strength

Cannot cover concepts absent in the original diffusion model without using
reference images.

- Future research
- Improve performance at higher guidance strength
- Learn multiple concepts together with disentanglement
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Thank You

Questions?

Project Page

SVCL=UCSD

18



	Slide 1: Prompt Sliders for Fine-Grained Control, Editing and Erasing of Concepts in Diffusion Models
	Slide 2: Image Synthesis: Limitations
	Slide 3: Concept Sliders1: LoRA Adapters for Precise Control in Diffusion
	Slide 4: Concept Sliders: A Solution, But Is It Perfect?
	Slide 5: Introducing Prompt Sliders
	Slide 6
	Slide 7
	Slide 8: Prompt Sliders for Various Concepts
	Slide 9: Results: Transfer to SD-v1.4 from SD-XL
	Slide 10: Results: Transfer to SD-v1.5 from SD-XL
	Slide 11
	Slide 12
	Slide 13: Comparison of Inference times and Prompt Slider transfers
	Slide 14
	Slide 15: Emotion Prompt Sliders Applied on a Real Image with Inversion3
	Slide 16: Concept Prompt Sliders Applied on a Real Image with Inversion3
	Slide 17: Next Steps…
	Slide 18: Thank You  Questions?

