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ABSTRACT

Video reasoning using Large Multimodal Models (LMMs) relies on costly rein-
forcement learning (RL) and verbose chain-of-thought, resulting in substantial com-
putational overhead during both training and inference. Moreover, the mechanisms
that control the thinking process in these reasoning models are very limited. In this
paper, using entropy of the model’s output as a signal, we discover that the high-
quality models go through a series of micro-explorations and micro-exploitations
which keep the reasoning process grounded (i.e., avoid excessive randomness while
the model is exploring or thinking through an answer). We further observe that
once this “thinking” process is over, more accurate models demonstrate a better
convergence by reducing the entropy significantly via a final exploitation phase (i.e.,
a more certain convergence towards a solution trajectory). We then use these novel,
theoretically-grounded insights to tune the model’s behavior directly at inference,
without using any RL or supervised fine-tuning. Specifically, during inference, our
proposed approach called V-Reason (Video-Reason) adapts the value cache of
the LMM via a few optimization steps on a small, trainable controller using an
entropy-based objective, i.e., no supervision from any dataset or RL is necessary.
This tuning improves the model’s micro-exploration and exploitation behavior
during inference. Our experiments show that our proposed method achieves signif-
icant improvements over the base instruction-tuned models across several video
reasoning datasets, narrowing the gap with RL-trained models to within 0.6%
average accuracy without any training, while offering massive efficiency benefits:
output tokens are reduced by 58.6% compared to the RL model.

1 INTRODUCTION

Reasoning with generative AI models, such as Large Language or Large Multimodal Models
(LLMs/LMMs), has gained substantial attention recently. This capability is implemented by asking
the model to “think” about a problem, before making a final recommendation, and can be accom-
plished by several approaches, including Chain-of-Thought (CoT) (Wei et al., 2022), supervised
fine-tuning with CoT (CoT-SFT) (Liu et al., 2025; Feng et al., 2025), or reinforcement learning
(RL) with a thinking-before-answering format (Guo et al., 2025; OpenAI et al., 2024). Although
initial progress was shown mainly for LLMs, such ideas have now been extended to video reasoning
problems (Feng et al., 2025; Li et al., 2025; Zhang et al., 2025b; Cheng et al., 2025; Wang et al.,
2024) by exploiting Vision-Language LMMs. Although successful, CoT-SFT, and RL-based methods
tend to be highly computationally intensive, both for training and inference, due to the long thinking
traces that they tend to produce. These costs are particularly exacerbated for video, due to the high
resolution and multiple frames involved in the reasoning process. Furthermore, there remains little
understanding of the factors that control the depth and quality of the reasoning process. In this paper,
we seek to address these problems by considering the following key questions:

1. Can inference-time metrics characterize the thinking process of video reasoning models? If
yes, can these metrics differentiate between higher- and lower-quality reasoning LMMs?

2. Can such metrics be used to formulate novel inference-time optimization objectives that
enhance video reasoning without requiring additional model training?
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Macro-exploration

Macro-exploitation

Better models do not increase entropy too much or too rapidly, 
have a longer exploration (more thinking), and converge to a lower final value (more confident)

V-Reason bridges the gap 
via a training-free approach

Micro-Explorations & Micro-Exploitations

Figure 1: V-Reason Overview: (a) Entropy of the output distribution averaged over the MMVU (Zhao et al.,
2025) dataset of 625 videos. We see clear macro-exploration and macro-exploitation phases with bigger, more
accurate models showing lower overall entropy (lower and later peak, followed by a lower final entropy during
the macro-exploitation). We use these key insights to adapt a model’s behavior in a training-free way using an
inference-time optimization technique. (b) Applying V-Reason on Qwen2.5-VL-7B-Instruct makes its entropy
behave more similarly to the larger or the RL-trained Video-R1-7B model. (c) Our method achieves higher
accuracy than the base LMM and bridges the accuracy gap with the RL model. (d) V-Reason also significantly
reduces the total output tokens compared to all models due to a dedicated entropy minimization phase.

To answer these questions, we first analyze the model’s output distribution entropy at generation step
t computed as Ht = −

∑
i∈V pit log p

i
t (V refers to vocabulary of the model) for instruction-tuned

LMMs of various sizes, as shown in Fig. 1(a). This analysis reveals two broad trends: (i) all models
exhibit a pattern of increasing and then decreasing entropy as tokens are generated, and (ii) larger,
more accurate, models have lower and delayed entropy maxima, followed by a reduction phase that
converges to a lower final entropy (see Fig. 1(a) and its inset).

The first trend above can suggest a formal definition of the “thinking” in terms of output distribution
entropy. As the model starts generating a response, it seems to be uncertain and searches through
multiple solution trajectories, which can explain the increase in its output entropy. We denote this as
the macro-exploration phase. As the generation progresses, the model seems to start to identify the
correct thinking thread, and becomes increasingly certain about a solution, resulting in the gradual
reduction in the entropy of its output. We denote this as the macro-exploitation phase.

The second trend seems to suggest that entropy should not increase too rapidly during the macro-
exploration phase. In fact, all models go through a series of micro-exploration and micro-exploitation
cycles (characterized by small increases and decreases of entropy) during both macro phases of
the thinking process; see Fig. 1(a) shaded regions. A delayed entropy peak can suggest that better
reasoning models explore more alternative answers, leading to longer thinking threads, which has
been identified as a sign of better thinking in the literature (Wei et al., 2022; Guo et al., 2025; OpenAI
et al., 2024). In this context, more and/or longer cycles of micro-exploration and micro-exploitation
can lead to “deeper thinking,” with lower and delayed entropy peaks and lower final entropy.

Fig. 1(b, brown line) shows that the above two observations also hold for an RL-trained Video-R1-7B
model (Feng et al., 2025). This model has a slightly lower and much later entropy peak than the
Qwen2.5-VL-7B-Instruct baseline model, which was used to train Video-R1-7B, and the final entropy
is very close to that of the significantly larger Qwen2.5-VL-72B-Instruct model.

Building on these observations, we ask if deeper thinking can be induced in the baseline models
directly at inference time, without any training. Specifically, can we manipulate the micro-exploration
and micro-exploitation behavior of the baseline instruction-tuned models to enhance their thinking
capabilities in a training-free manner? To this end, we propose V-Reason, which introduces a
small, trainable controller to the LMM value cache, which is adapted only at inference-time. This
adaptation involves a few optimization steps of an objective based purely on entropy, without requiring
any supervision from data or RL. Instead, the objective encourages more pronounced cycles of
micro-exploration and micro-exploitation, by inducing the model to more strongly increase/decrease
entropy during these cycles, followed by a final entropy minimization phase. This process prevents
entropy from rising too fast during macro-exploration and enables the model to achieve a lower final
entropy during macro-exploitation, thus making the baseline model behave more like a stronger
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reasoning model (see Fig. 1(a,b)). To enhance efficiency, we further introduce a “lite” variant,
V-Reason(Lite), which reduces memory and computational overhead by evicting 50% of the
lowest-norm video tokens from the KV-cache.

Our results suggest that V-Reason and V-Reason(Lite) bridge the gap between baseline
instruction tuned models and RL-trained models in terms of accuracy (see Fig. 1(c)). Notably, our
training-free approach mainly guides the baseline model’s search for reasoning traces in a more
grounded and controlled manner, avoiding unbounded entropy increases and enabling deeper thinking.
It is important to note though that if a base model lacks the knowledge to solve a certain problem,
our training-free search-based approach cannot compensate for that limitation. In other words, if the
solution lies outside the search space of the model’s knowledge, a search-based algorithm cannot
discover it. For such problems, training-based approaches would be better suited. While we do
not see such limitation often for many video reasoning tasks, we will discuss one such instance in
detail in the Section 4 (e.g., the VSI(MRA) task in Fig. 1(c)). Finally, because we have a dedicated
entropy minimization phase, we also converge to the final solution trajectory significantly faster, thus
producing considerably fewer output tokens on average compared to the RL models (see Fig. 1(d))
which also helps the inference times. Thus, V-Reason and V-Reason(Lite) bridge the gap
with the RL-trained model while producing significantly fewer output tokens. In summary, the paper
makes the following key contributions:

1. To our knowledge, the problem of inducing video reasoning without training has not been
previously addressed in the literature. We are the first to introduce a training-free, purely
inference-time optimization method to improve video reasoning without SFT or RL.

2. We hypothesize that deeper thinking can be achieved by pronounced micro-exploration and
micro-exploitation cycles of the baseline instruction-tuned models and propose V-Reason
to achieve this. We also provide simple theoretical results for our method.

3. We show that V-Reason induces a lower and delayed entropy peak during macro-
exploration and a lower final entropy during macro-exploitation, similar to the patterns
observed for the reasoning models trained by RL or SFT (see Fig. 1(b)).

4. Extensive experiments on six video reasoning benchmarks show that V-Reason achieves
an average improvement of 1.4% over the base model, narrowing the gap to within 0.6% of
the RL-trained Video-R1-7B model (see Fig. 1(c)). We further show gains across model sizes
ranging from 3B to 32B and even up to 72B LMMs. We also demonstrate that V-Reason
is robust/complementary to multiple SOTA decoding methods and perform many ablations.

5. Finally, we show that inference time optimization can lead to more efficient reasoning
by significantly reducing the total number of reasoning tokens generated (see Fig. 1(d)).
V-Reason produces 21.4% fewer tokens than the base Qwen2.5-7B-Instruct model, and
58.6% fewer tokens than the RL-trained Video-R1-7B model. This means that its inference
time is competitive to the base model and up to 37% lower than Video-R1-7B on average.

2 RELATED WORK

Reasoning in Large Language Models. Reasoning in LLMs can be achieved by chain-of-thought
prompting, instruction-tuning with CoTs, or reward-based fine-tuning with RL. Existing work on
prompting primarily relies on eliciting better CoT reasoning paths from the model (Kojima et al.,
2022; Yasunaga et al., 2023; Zhou et al., 2023a). While these methods have achieved high accuracies,
few-shot prompting techniques are task-specific, less generalizable and require manual prompt
designs for each task. Better prompting techniques require extensive prompt engineering and result
in inconsistent performances (Zhou et al., 2023b). Overall, prompting techniques are limited by
model-specific and task-specific tuning (Yang et al., 2024b) making them less favorable. Recent
works endeavor to improve the CoT prompting by verification (Golovneva et al., 2023) that verifies
and controls the intermediate steps generated by the model. Such methods still require CoT prompting
and are computationally intensive due to the additional verification steps involved.

Instruction-tuning and reward-based fine-tuning are alternative ways to elicit reasoning in LLMs
when additional compute is available for supervision (Magister et al., 2023; Huang et al., 2023;
Chung et al., 2022). However, these techniques require supervised CoT data and expensive RL stages
to make the model compliant to produce the reasoning or thinking process in specified formats for
easy extraction of the answers. Different from the above methods, we seek an efficient framework to
enhance reasoning in LMMs via inference-time optimization without any supervised data or training.
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Video Reasoning. Video Reasoning methods have been introduced recently (Feng et al., 2025; Chen
et al., 2025) inspired by the success of LLM reasoning. Video-R1 (Feng et al., 2025) introduces
a temporal GRPO loss to specifically improve temporal reasoning capabilities along with a new
dataset for training. VideoChat-R1 (Li et al., 2025) introduces a chat model with spatio-temporal
reasoning abilities by training with GRPO and rule-based rewards. TinyLLaVA (Zhang et al., 2025a)
shows that reasoning can be effective even for smaller models, using a Qwen-3B-VL model trained
with standard GRPO and RL-based reward losses. All of the above methods rely on expensive
training to elicit reasoning in LMMs for videos; for instance, training TinyLLaVA on 50K samples
takes ∼3 days on 4 A100 GPUs, and the cost scales prohibitively for larger models (7B, 32B). To
overcome this, we propose an efficient framework that leverages inference-time optimization to
enhance the pretrained reasoning abilities of LMMs, achieving higher accuracy with fewer output
tokens compared to RL-trained models.

Inference-time Reasoning Methods. Inference-time optimization methods (Chefer et al., 2023;
Rout et al., 2025) have gained popularity in diffusion models for improving control and consistency.
Recent works have explored eliciting reasoning capabilities from LLMs at inference time (Wang
& Zhou, 2024; Fu et al., 2025), aiming to reduce computational cost and improve interpretability.
Decoding strategies such as CoT-Decoding (Wang & Zhou, 2024) modifies token selection to surface
latent reasoning traces, while ThinkLogit (Zhang et al., 2025c) manipulates logits with guidance from
a smaller preference model to induce longer reasoning chains. In parallel, sampling-based methods
such as min-p (Nguyen et al., 2024) and the concurrent approach top-h (Baghaei Potraghloo et al.,
2025) restrict candidate tokens based on probability thresholds or rank cutoffs, improving fluency but
without explicitly targeting reasoning. Our method is orthogonal to these approaches: rather than
filtering outputs, we optimize the model’s intrinsic token distributions during inference and show
consistent improvements even when combined with min-p and top-h sampling-based methods.

Other line of works utilize steering to modify the model’s behavior for reasoning tasks (Azizi et al.,
2025; Belitsky et al., 2025). (Azizi et al., 2025) modifies the hidden states of the model to compress
CoT traces by relying on a reasoning-trained model to distinguish concise from verbose reasoning.
KV Cache Steering (Belitsky et al., 2025) presents a one-shot intervention in the key-value cache
to induce reasoning in small LLMs with steering vectors derived from GPT-4o (Hurst et al., 2024).
In contrast to these works that have indirect reliance on a reasoning-trained model, we propose an
inference-optimization technique that modulates the value-cache to enhance reasoning using only the
entropy of the model’s output as objective without any reliance on external model or data.

3 PROPOSED APPROACH: V-REASON

In this section, we describe the proposed V-Reason, its inference-time optimization objectives, and
supporting theoretical results. We then address practical aspects, including redundancy reduction in
video tokens to lower memory costs, and introduce V-Reason(Lite) for improved efficiency.

3.1 INFERENCE-TIME OPTIMIZATION

Modifying the reasoning behavior of a pre-trained LMM requires two components: a set of reasoning
inducing parameters, which are modified or added to the model to improve reasoning, and an
optimization objective, to optimize those parameters. As discussed in Section 1, the key goals
for V-Reason are to: (a) decrease the rate of growth of the output distribution entropy during
macro-exploration, by controlling the model behavior so as to promote more pronounced cycles
of micro-exploration and micro-exploitation during the output generation, and (b) reduce the final
entropy during macro-exploitation. To accomplish these objectives, we propose a value-cache
controller and a novel inference-time optimization objective.

Reasoning Inducing Parameters. We propose to augment the model with the Value-Cache Con-
troller shown in Fig. 2(a). This controller, denoted as ∆V , is a small, trainable parameter added to the
value cache VL of the last decoder layer of the model, specifically at the video token locations. All
other model layers remain frozen and no modifications are applied to the input or output text tokens.
The controller ∆V is initialized to zero and updated at every kth generated output token (k > 1) via
the inference-time optimization method discussed below. Note that no optimization is performed
for the first token, as that is when the KV-Cache prefilling happens for all layers. To prevent the
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Figure 2: (a) Proposed approach for enhancing video reasoning in a training-free manner using entropy-based
objective. V-Reason uses an inference optimization method to modulate the values cache of the last decoder
layer with an entropy switching loss (Lswitch) to further enhance the video reasoning performance. (b) The
average entropy plot for Qwen-2.5-VL-7B on the MMVU dataset along with its EMA. The inset depicts the shift
in the entropy maxima for the EMA curve denoted by the black arrow (c) EMA entropy plot of V-Reason for
a single sample that shows the micro-exploration and micro-exploitation within the macro-exploration phase
before the entropy maxima and macro-exploitation phase after. (d) Plot showing the αk switching in V-Reason
for the corresponding example in (c) that ensures bounded entropy updates without a rapid increase.

controller from destabilizing the pretrained model, we introduce the normalization

Vnew
L =

VL +∆V

||VL +∆V ||
· ||VL||. (1)

This normalization preserves the original magnitude ||VL|| of the cache vector, ensuring that the
controller ∆V introduces only a directional update. This helps maintain a stable forward pass,
ensuring consistent output token generation. This normalization is inspired by well-known methods
like Weight Normalization (Salimans & Kingma, 2016; Srebro & Shraibman, 2005), which have been
shown to have good optimization properties and are beneficial for recurrent and generative models.

Optimization Objective. In Section 1 and Fig. 1(a), we suggested that the effectiveness of a reasoning
model is related to the entropy of its output token distribution. While all reasoning models exhibit a
period of macro-exploration, where entropy increases, and macro-exploitation, where it decreases,
better models have a macro-exploration stage characterized by lower and delayed entropy maxima.
We further posited that this is largely driven by cycles of micro-exploration and micro-exploitation,
which prevent the entropy from increasing or decreasing too rapidly. We interpret these cycles as
periods where the model temporarily increases the output entropy (exploration) to allow alternative
reasoning paths, needed to escape from a current unpromising path. The model then pursues a new
path in more detail (exploitation), leading to a decrease of entropy and the potential realization
that this new path is itself not promising. The cycle is then repeated. We hypothesize that stronger
reasoning models are more decisive in their patterns of micro-exploration and exploitation, which
leads to more and/or stronger cycles, thus reducing the rate of macro entropy increase. This leads to
lower and delayed entropy peaks. It follows that the reasoning power of a model should increase if
the model is encouraged to have more vigorous micro-exploration/exploitation cycles. After reaching
the entropy peak of macro-exploration, the model switches to macro-exploitation, where it pursues a
reasoning path in detail to produce an answer, which leads to a decrease of the output entropy. Better
models reach lower entropy values at the end of this stage. In this work, we propose to reinforce this
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behavior by optimizing the value cache controller ∆V with the Entropy Switching Loss:

Lswitch(∆V ) = −αkHk = αk

∑
i∈|V|

pik(∆V )log(pik(∆V )) (2)

where pk is the output distribution (softmax after the LM-Head) for every kth token generated (k > 1),
Hk the entropy of this distribution, and αk ∈ {−1,+1} is a coefficient that switches between −1
and +1. The minimization of this loss encourages an increase in the entropy (micro-exploration)
when αk = 1 and a decrease (micro-exploitation) when αk = −1. Hence, setting αk = 1 (αk = −1)
during the micro-exploration (micro-exploitation) periods, encourages the model to be more decisive
in its micro-exploration/exploitation cycles. It is also possible to explore other behaviors, e.g., using
this procedure to reinforce micro-cycles during macro-exploration, followed by minimizing entropy
alone (αk = −1) during macro-exploitation.

To implement this, we first compute the exponential moving average (EMA) of the entropy at each
generation step t (different from k, which is the optimization step for the value-cache controller)

Hema
t = βHt−1 + (1− β)Ht (3)

where t > 1, β is a smoothing coefficient (set to 0.98), and H0 is the entropy of the first token which
is a small value1. The EMA is a low-pass filtered version of the raw entropy, and thus much less
noisy, as shown in Fig. 2 (b). It achieves a good trade-off between oscillating too much, due to noise,
and switching between increasing and decreasing entropy during micro-cycles, as shown in Fig. 2 (c).
Also, because it grows much slower than the raw entropy, following the EMA naturally leads to a
lower and delayed entropy peak, as shown in Fig. 2 (b). The switching coefficient αk is then defined
to follow the EMA,

αk =

{
+1 ifHema

k ≥ Hema
peak

−1 if Hema
k < Hema

peak

(4)

where, Hema
k is the EMA at the current step, and Hema

peak the maximum value of EMA observed
before step k. This is illustrated in Figure 2 (d). It encourages the entropy to (i) increase when the
EMA is larger than the last peak, i.e., the EMA is increasing, and to (ii) decrease otherwise, i.e.,
the EMA is decreasing, therefore reinforcing the natural micro-cycles of the model. Once the EMA
reaches a global maximum, αk becomes −1 and macro-exploitation begins. This global maximum of
entropy can also be seen as a more formal definition of the end of the “thinking” process. A detailed
description of the full algorithm is given in Algorithm 1.

Fig. 2 (c) shows the EMA entropy plot of V-Reason for a single sample. It is clear that there are
more and stronger local minima and maxima depicting the micro-exploration/exploitation cycles
before the entropy maxima. This slows the entropy growth during macro-exploration, leading to
a delayed peak and substantially more exploration than by the original model. Once the global
maximum of the EMA is reached, αk becomes −1 and the model enters the macro-exploitation stage,
where it is encouraged to decrease entropy until it arrives at a solution. Overall, the optimization
promotes 1) more and/or longer cycles of micro-exploration and micro-exploitation during the macro-
exploration stage, which lead to “deeper thinking,” with lower and delayed entropy peaks, and 2) a
stronger emphasis on entropy minimization during the macro-exploitation stage, which leads to faster
convergence to a lower final entropy.

We observe that the optimization of V-Reason induces the model to arrive at the final solution
significantly faster than CoT-SFT and RL models, which often produce verbose outputs. This can be
seen in Fig. 1 (d). Since computation is tied to the length of the output sequence, this also results in
significantly more efficient inference than those models. Hence, despite the extra computation needed
for the optimization, V-Reason has more efficient inference overall (section 3.2). Finally, since
V-Reason exploits the natural variation in entropy, it adaptively determines how much exploration
and exploitation is required by each sample. This makes it robust and adaptable to various datasets
and types of video reasoning problems (see Section 4).

Theoretical Guarantees. We provide theoretical guarantees that the entropy updates induced by our
Entropy Switching Loss remain stable and that our EMA-based objective bounds the oscillations in
entropy. The formal statements are below, with assumptions and proofs discussed in Appendix A.

1The baseline instruction-tuned models are certain about the very first predicted token; it is usually just the
<think> token, even without RL or CoT-SFT, because of the instruction we give to the model.
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Proposition 1 (Bounded entropy updates). Under mild smoothness and boundedness assumptions,
one gradient step of size η on the Entropy Switching Loss changes entropy by at most

|Ht+1 −Ht| ≤ ηC + o(η),

and the process {Ht} remains within the compact interval [0, log n].
Proposition 2 (EMA smoothing bounds oscillations). For β ∈ (0, 1) close to 1, the EMA acts as
a low-pass filter: (i) it attenuates high-frequency fluctuations of Ht, (ii) delays the attainment of
entropy maxima, and (iii) enforces bounded oscillations by switching αk to −1 once a new global
EMA maximum is reached.

Proofs: Please see Appendix A for the proofs of both propositions.

3.2 EFFICIENCY CONSIDERATIONS: V-REASON(LITE)

Video reasoning and vision-language LMMs can have high GPU memory costs due to a large number
of input video tokens. Adding inference-time optimization to these models at first sight can seem
inefficient, as it can further increase inference costs. However, V-Reason has several properties that
counteract this hypothesis. First, the controller is only added to the decoder cache of the last model
layer. This significantly reduces the memory overhead of storing activations for backpropagation,
which reduces to the trainable controller ∆V and a few feature maps (last decoder layer’s value
cache, attention output, feedforward layers, and LM-Head). Second, and most important, because
V-Reason usually arrives at the final solution with significantly less tokens as shown in Fig. 1(d),
both its inference time and computation are much lower than models trained to think.

Nevertheless, we explore an additional avenue for efficiency. Before performing the V-Reason
optimization, we optionally prune 50% of the video tokens from the KV-Cache of all decoder layers,
a variant we refer to as V-Reason(Lite). This significantly reduces the KV-Cache overhead and
also halves the size of the trainable controller. Interestingly, we found that for some datasets this also
slightly improves V-Reason reasoning performance (perhaps by reducing noise due to unimportant
video tokens). To prune out unimportant video tokens, we measure the mean value of the l2 norm of
video tokens across all value caches and eliminate the lowest 50% video tokens from both Key and
Value Caches of all decoder layers. The trainable controller is then only added to the remaining video

tokens in the last decoder layer. The new value update is Vnew
L =

Vpruned
L +∆V

||Vpruned
L +∆V ||

· ||VL||, which still

maintains the magnitude of the unpruned video value cache from equation 1. We empirically find that
this reduces the error due to pruning and enables the V-Reason(Lite) models to achieve much
higher accuracies than when the value cache norm is altered. Algorithm 2 in Appendix provides the
pseudo-code for the lite variant.

4 EXPERIMENTS

Implementation Details. All experiments use pytorch version 2.5.1+cu121, transformers version
4.52.4, and a single NVIDIA-A100 GPU. Following (Feng et al., 2025), we use multinomial
sampling with (temperature=0.1, top-p=0.001) for our experiments unless otherwise noted.
See Appendix B for more details.

Video Reasoning. We evaluate V-Reason on the Qwen-2.5-VL-Instruct (Bai et al., 2025) model
series under 16/32 frames settings (from (Feng et al., 2025)) and maximum video pixels px×28× 28
with px=256/128, respectively. Similar to (Feng et al., 2025), V-Reason is evaluated across 6 video
reasoning benchmarks, covering two tasks, Multiple-Choice QA and Regression, evaluated by classi-
fication accuracy and Mean Relative Accuracy (MRA) respectively. We report the average accuracy
with and without MRA to illustrate the model’s performance across different task formulations.

4.1 VIDEO REASONING BENCHMARK RESULTS

Table 1 presents a comparison of V-Reason with Qwen2.5-VL-Instruct baselines and the RL-
trained Video-R1-7B across multiple video reasoning benchmarks. Green brackets show the gain
of the V-Reason model over the baseline, with negative gains in red. Both (at least one) versions
of V-Reason improve the baseline performance for 15/18 (18/18) model/dataset combinations.
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Table 1: Comparison of performance of different models on video reasoning benchmarks. #F denotes the number
of frames and px denotes the maximum video pixels used, px×28× 28.
Model #F/px VSI-Bench VideoMMMU MMVU MVBench TempCompass VideoMME Avg Avg

(Acc/MRA) (mc) (wo sub) (wo mra)
(Yang et al., 2025) (Hu et al., 2025) (Zhao et al., 2025) (Li et al., 2024b) (Liu et al., 2024) (Fu et al., 2024)

GPT-4o (Hurst et al., 2024) – 34.0 61.2 75.4 – – 71.9 – –
LLaMA-VID (Li et al., 2023) – – – – 41.9 45.6 – – –
VideoLLaMA2 (Cheng et al., 2024) – – – 44.8 54.6 – 47.9 – –
LongVA-7B (Zhang et al., 2024) – 29.2 23.9 – – 56.9 52.6 – –
VILA-1.5-8B (Lin et al., 2023) – 28.9 20.8 – – 58.8 – – –
Video-UTR-7B (Yu et al., 2025) – – – – 58.8 59.7 52.6 – –
LLaVA-OneV-7B (Li et al., 2024a) – 32.4 33.8 49.2 56.7 – 58.2 – –

Qwen2.5-VL-3B (Bai et al., 2025) 32/128 24.3 (31.6/17.0) 32.3 49.3 52.5 28.1 48.1 37.0 40.3
V-Reason-3B (Lite) 32/128 26.3 (32.2/20.4) [+0.6/+3.4] 33.9 [+1.6] 50.9 [+1.6] 53.2 [+0.7] 29.1 [+1.0] 49.0 [+0.9] 38.3 [+1.3] 41.3 [+1.0]
V-Reason-3B 32/128 24.7 (31.9/17.5) [+0.3/+0.5] 33.2 [+0.9] 50.2 [+0.9] 52.9 [+0.4] 30.4 [+2.3] 48.8 [+0.7] 37.9 [+0.9] 41.2 [+0.9]

Qwen2.5-VL-7B (Bai et al., 2025) 16/256 26.4 (31.4/21.4) 47.6 59.5 60.4 72.2 50.5 49.0 53.6
V-Reason-7B (Lite) 16/256 27.9 (34.1/21.6) [+2.7/+0.2] 47.6 [+0.0] 63.4 [+3.9] 60.8 [+0.4] 71.6 [-0.6] 51.1 [+0.6] 49.9 [+0.9] 54.6 [+1.0]
V-Reason-7B 16/256 28.5 (34.5/22.6) [+3.1/+1.2] 47.8 [+0.2] 62.2 [+2.7] 61.0 [+0.6] 72.3 [+0.1] 51.1 [+0.6] 50.2 [+1.2] 54.8 [+1.2]

Video-R1-7B (Feng et al., 2025) 16/256 33.8 (30.5/37.0) 47.8 64.2 63.9 72.2 57.2 53.3 56.0

Qwen2.5-VL-7B (Bai et al., 2025) 32/128 28.1 (33.8/22.3) 45.8 61.3 60.7 72.4 53.7 50.0 54.6
V-Reason-7B (Lite) 32/128 30.5 (37.3/23.7) [+3.5/+1.4] 47.4 [+1.6] 65.0 [+3.7] 60.6 [–0.1] 72.4 [+0.0] 53.5 [–0.2] 51.4 [+1.4] 56.0 [+1.4]
V-Reason-7B 32/128 30.3 (37.1/23.4) [+3.3/+1.1] 46.3 [+0.5] 62.7 [+1.4] 60.9 [+0.2] 73.3 [+0.9] 54.9 [+1.2] 51.2 [+1.2] 55.9 [+1.3]

Video-R1-7B (Feng et al., 2025) 32/128 35.6 (30.9/39.2) 48.8 64.0 64.1 73.3 58.7 54.1 56.6

Furthermore, the gain is of at least 1.5 points for 12/18 combinations and can be as high as 3.9 points.
In many cases, these gains are a substantial part of the gap between the baseline and the RL-trained
model. For example, for MMVU and 7B-256px models the 63.4 point accuracy of V-Reason (Lite)
brings the relatively poor 59.5 point baseline close to the 64.2 point accuracy of the Video-R1. For
the 128 px model, V-Reason even surpasses Video-R1 (65.0 vs. 64.0). This model also matches
Video-R1 on TempCompass (73.3 each), and nearly closes the gap on VideoMMMU (47.4 vs. 48.8).
These very significant gains show that the baseline model already has a significant ability to reason,
which RL brings to the surface, but can also be mostly unlocked by much less expensive inference
time optimization of V-Reason. The only tasks where RL optimization proves particularly effective
are the regression-style tasks (e.g., VSI-Bench), which are probably underrepresented in pretraining,
as can be seen by the very poor baseline performance. Here, Video-R1 exhibits stronger performance
(MRA 39.2 vs. 23.7 for V-Reason). Since V-Reason relies on the pretrained model knowledge to
explore alternative paths during reasoning, it cannot cover the gap on these. Nevertheless, V-Reason
obtains a +1.4% improvement over the baseline.

Overall, across model scales, input resolutions, and tasks other than regression (without MRA),
V-Reason has average gains in [+0.9,1.3]% over Qwen2.5-VL, at the 3B scale. At the 7B scale,
V-Reason/V-Reason(Lite) reaches 54.8%/54.6% (256 px) and 55.9%/56.0% (128 px) average
accuracy, narrowing the gap to Video-R1-7B (56.6% at 128 px) to within 0.6%.

Impact of Frames and Resolution. V-Reason is robust to different frame counts and resolutions,
making it adaptable to resource-constrained settings. For a comparable compute budget (256 px/16
frames vs. 128 px/32 frames), accuracy improves with more frames. Consistent with this trend,
V-Reason shows larger average gains at 32 frames (+1.4%) compared to 16 frames (+1.0%).

Full vs. Lite. Both Full and Lite V-Reason variants surpass the base model, with Lite performing
comparably or slightly better in several cases (e.g., +1.0% at 3B and +1.4% at 7B for 128 px). The
Full variant offers a small +0.2% improvement at 256 px with 16 frames, suggesting that structural
pruning and reasoning enhancements provide complementary benefits.

Output Sequence Length. As shown in Fig. 1(d), V-Reason substantially reduces output token
length (58.6% reduction over Video-R1). Table 5 (Appendix C) shows that this translates into
significant latency savings of up to 67% (37% on average). The fact that this holds for both Full and
Lite variants indicates that the gains stem from the proposed optimization rather than pruning alone.

Table 2: Large model
results on MMVU.
Model MMVU

Qwen-2.5-VL-32B 69.0
V-Reason-32B 72.0 [+3.0]

Qwen-2.5-VL-72B 72.6
V-Reason-72B 73.0 [+0.4]

Larger Models. To test the scalability of V-Reason, we further evaluate
it on larger Qwen2.5-VL backbones (32B and 72B) using MMVU. Table 2
shows that V-Reason continues to provide significant gains, e.g., +3.0%
(72.0 vs. 69.0) for the 32B model, demonstrating that reasoning benefits
compound with scale rather than diminishing. For the 72B model, which is
already strong, V-Reason still yields a +0.4% gain (73.0 vs. 72.6). These
results show that V-Reason generalizes to larger models and provides
benefits even at the frontier of large-scale video reasoning models.
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Question: When the phenomenon in the video occurs, which of the following options is the most important to adjust? A.
Renin-angiotensin system B. Hypothalamic-pituitary-thyroid axis C. Adrenaline and norepinephrine D. Melatonin secretion E.
Sodium-potassium pump activity

Qwen-2.5-VL-7B:

Let me think through this. The video seems to be discussing a condition where cells swell, which could be related to fluid
retention or electrolyte imbalance. Given the options, the sodium-potassium pump activity is crucial for maintaining the
balance of sodium and potassium ions across cell membranes, which is essential for cell volume regulation. \n\nThe renin-
angiotensin system is involved in blood pressure regulation and fluid balance, but it's more about the overall pressure
and not specifically about cell swelling. The hypothalamic-pituitary-thyroid axis is primarily involved in metabolism and
energy production, not directly in cell swelling. Adrenaline and norepinephrine are involved in the body's stress response
and can affect heart rate and blood pressure, but not directly cell swelling. Melatonin secretion is related to sleep and
circadian rhythms, not cell swelling.\n\nTherefore, the most important to adjust in this context would be the sodium-
potassium pump activity.\n\n<answer>E</answer>

V-Reason-7B:

Let me think through this. The video seems to be discussing a condition where cells swell, which is a common symptom of
various medical conditions. The options provided are related to different endocrine systems and their functions. \n\n- The
Renin-angiotensin system is involved in blood pressure regulation and fluid balance.\n- The Hypothalamic-pituitary-thyroid
axis regulates the thyroid gland and its hormones.\n- Adrenaline and norepinephrine are part of the sympathetic nervous
system, involved in the \"fight or flight\" response.\n- Melatonin is a hormone that regulates sleep and wake cycles.\n-
The Sodium-potassium pump activity is crucial for maintaining the electrical potential across cell membranes.\n\nGiven
that the video is about cell swelling, which can be a result of fluid retention or imbalances in electrolyte levels, the
most relevant system to adjust would be the Renin-angiotensin system, as it directly affects fluid balance and blood
pressure.\n\n<answer>A</answer>

Figure 3: Qualitative result: An example output and comparison with the baseline Qwen-2.5-VL-7B together
with its entropy plot shown on the top right. The black arrow in the entropy plot denotes the shift in the EMA
peak demonstrating longer exploration for V-Reason compared to the baseline. See other results in H.

Table 3: Comparison with Alternative
Decoding Methods.
Qwen-2.5-VL-7B temp top-p MMVU

min-p 0.3 0.9 61.8
min-p+V-Reason(Lite) 0.3 0.9 63.8 [+2.0]
top-H 0.3 0.9 60.2
top-H+V-Reason(Lite) 0.3 0.9 61.1 [+0.9]

min-p 1.0 0.9 55.0
min-p+V-Reason(Lite) 1.0 0.9 61.3 [+6.3]
top-H 1.0 0.9 62.2
top-H+V-Reason(Lite) 1.0 0.9 62.6 [+0.4]

V-Reason-7B (Lite) 0.1 0.001 65.0 [+2.8]

Comparison with Decoding Methods. As shown in
Table 3, our method is robust and complementary to dif-
ferent decoding strategies with significant improvements
over SOTA approaches such as min-p (Nguyen et al.,
2024) and (concurrent) top-H (Baghaei Potraghloo et al.,
2025). For the Qwen-2.5-VL-7B model, using the best
min-p decoding with V-Reason(Lite) yields a gain of
+2.0 points on MMVU, while combining with best top-H
decoding provides a smaller improvement of +0.4. On
higher temperatures, min-p loses significant accuracy but
V-Reason(Lite) is able to restore it back (+6.3%).
Most notably, V-Reason-7B (Lite) achieves the high-
est score of 65.0, corresponding to a further +2.8 gain over
the best decoding baseline.

Qualitative Results. Figure 3 exemplifies the reasoning differences between V-Reason and the
baseline, also showing their entropy profiles. The entropy plots reveal that V-Reason has a delayed
EMA peak and a lower overall entropy, encouraging extended exploration that ultimately enables the
model to reach the correct solution. As highlighted in red, the baseline initially follows a promising
trajectory but subsequently diverges onto an incorrect reasoning path, which leads to the wrong
answer. In contrast, V-Reason identifies an alternative path precisely at the point where the baseline
falters, and this revised trajectory, shown in green, successfully leads to the correct answer. Please
see Appendix H for other examples.

Table 4: Optimization objec-
tive ablations.
Method MMVU

Qwen-2.5-VL-7B 61.3
Min-Entropy (Lite) 62.1 [+0.8]
Max-Entropy (Lite) 63.8 [+2.5]

V-Reason(Lite) 65.0 [+3.7]

Alternative Losses. The switching loss in equation 2 supports various
behaviors beyond that encouraged by V-Reason. Two extreme alterna-
tives are enforcing strictly increasing entropy (max-entropy, αk = 1, ∀k)
and strictly decreasing entropy (min-entropy, αk = −1, ∀k). Table 4
shows both approaches are clearly inferior to V-Reason. However, it
is interesting to note that even these basic strategies (encourage macro-
exploration or macro-exploitation only) improve on the performance of
the baseline model. This confirms the importance of the output distribu-
tion entropy on the reasoning ability of LMMs.

Optimization Step-size. As shown in Figure 4 (Appendix E), V-Reason consistently outperforms
the base model across different step-sizes k, highlighting a trade-off between accuracy (better with
smaller step-sizes) and efficiency (faster with fewer steps). More analyses and ablations are provided
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in Appendix D and E. Please see Appendix F for a discussion on the limitations of V-Reason and
the future work G.

5 CONCLUSION

In this paper, we introduced V-Reason, a novel training-free framework designed to enhance rea-
soning in videos, along with a value-cache controller that enables inference-time optimization. Our
method leverages a theoretically-grounded entropy-based objective to reinforce the micro-exploration
and micro-exploitation behaviors observed across models. This design effectively mitigates un-
bounded entropy growth during early generation steps, resulting in lower final entropy, a characteristic
of stronger models. We further proposed V-Reason(Lite), a “Lite” variant which improves the
memory by pruning low l2-norm entries in the value cache. Extensive experiments across multiple
benchmarks demonstrate that V-Reason narrows the gap to RL–trained models (e.g., Video-R1) to
within 0.6%, while substantially reducing output token length (↓58.6%); this also results in lower
(↓37%) inference time than Video-R1. Moreover, V-Reason consistently improves performance
across model scales ranging from 3B to 72B parameters and remains robust to variations in frame
sampling, pixel resolution, decoding techniques, and other hyperparameter configurations.
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A THEORETICAL ANALYSIS: BOUNDING ENTROPY UNDER SWITCHING LOSS

Let the vocabulary size be n = |V|. At generation step t, the model (with value-cache controller
parameters ∆V ) produces logits zt ∈ Rn and probabilities

pt(∆V ) = softmax(zt(∆V )),
∑
i

pit = 1.

The Shannon entropy of this distribution is

Ht(∆V ) := −
n∑

i=1

pit(∆V ) log pit(∆V ),

and its exponential moving average (EMA) is

Hema
t = βHema

t−1 + (1− β)Ht, β ∈ (0, 1).

The Entropy Switching Loss at optimization step k is

Lswitch(∆V ) = −αkHk(∆V ),

where the coefficient αk ∈ {−1,+1} is defined as

αk =

{
+1 if Hema

k ≥ Hema
peak,

−1 otherwise,

with Hema
peak denoting the maximum EMA value observed before step k.

Assumptions. We make the following assumptions:

1. Logits zt(∆V ) are smooth in ∆V , and ∂zt/∂∆V is bounded. From equation 1, Vnew
L =

VL+∆V
||VL+∆V || · ||VL||. So, ∂zt/∂∆V being bounded is a valid assumption because the update
to value cache is bounded by the normalization factor which only provides a directional
update.

2. The optimizer uses a bounded step size (learning rate) η > 0 and updates are sufficiently
small per step (i.e., standard stochastic gradient/Lipschitz assumptions).

3. Vocabulary size is finite, hence Ht ∈ [0, log n] for all t.

Preliminaries. Differentiating the entropy with respect to logits yields

∇zH = −J⊤
p (1+ log p),

where Jp = ∂p/∂z is the softmax Jacobian. Since ∥Jp∥ is bounded and 1 + log p is finite (as
pi ∈ (0, 1]), we obtain

∥∇∆V H∥ ≤ C

for some constant C.
Proposition 1 (Bounded entropy updates). Under the assumptions above, one gradient step of size η
on Lswitch changes entropy by at most

|Ht+1 −Ht| ≤ ηC + o(η),

and the process {Ht} remains in the compact interval [0, logn]. Here, o(η) denotes the higher-order
terms from the Taylor expansion of H(∆V ) around the current iterate.

Proof. First, the gradient of entropy with respect to controller parameters is

∇∆V Hk(∆V ) =
∂Hk

∂zk

∂zk
∂∆V

.

Bounding∇zHk. For softmax probabilities bounded away from 0 and 1, the Jacobian Jp = ∂pk/∂zk
satisfies ∥Jp∥2 ≤ 1. Moreover, the entropy gradient w.r.t. logits is

∇zHk = −J⊤
p (1+ log pk),
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and ∥1+ log pk∥2 ≤
√
nmaxi |1 + log pik| ≤ C1 for some constant C1 depending on n and ϵ (the

lower bound on softmax probabilities). Therefore,

∥∇zHk∥2 ≤ C1.

Bounding ∇∆V Hk. Since zk is Lz-Lipschitz in ∆V ,

∥∇∆V Hk∥2 = ∥∇zHk · ∂zk/∂∆V ∥2 ≤ C1Lz := LH .

Bounding one gradient step. A single gradient step updates the controller:

∆V ← ∆V + ηαk∇∆V Hk.

Using the Lipschitz property of Hk w.r.t ∆V ,

|Hk(∆V + ηαk∇∆V Hk)−Hk(∆V )| ≤ η∥∇∆V Hk∥2 ≤ ηLH .

Global bounds. Since Hk ∈ [0, log n] by definition, this step-size bound guarantees the entropy
remains in [0, logn] after each update.

Proposition 2 (EMA smoothing bounds oscillations). For β ∈ (0, 1) close to 1, the EMA acts as
a low-pass filter: (i) it attenuates high-frequency fluctuations of Ht, (ii) delays the attainment of
entropy maxima, and (iii) enforces bounded oscillations by switching αk to −1 once a new global
EMA maximum is reached.

Proof. (i) The recursion Hema
t = βHema

t−1 + (1 − β)Ht is a causal low-pass filter, suppressing
fast oscillations. (ii) Because Hema averages over past values, peaks in Ht appear later and at
lower amplitude in Hema, creating delayed switching. (iii) Once Hema reaches a global maximum,
α = −1, turning the loss into an entropy-minimization objective. This guarantees the entropy
trajectory descends after each peak, bounding the amplitude of oscillations.

Discussion. The trivial upper bound Ht ≤ logn already prevents unbounded entropy; Proposition 1
strengthens this by showing the optimization dynamics cannot instantaneously jump arbitrarily close
to log n provided the learning rate is small and gradients are bounded. In practice, this prevents
pathological “entropy blow-ups” during optimization. EMA smoothing makes the switching decision
depend on sustained increases in entropy rather than on single noisy spikes. These results imply that
the Entropy Switching Loss enforces bounded micro-cycles of exploration and exploitation: entropy
increases are promoted only when sustained (captured by Hema), while decreases are enforced once
a peak is reached. This yields lower and delayed entropy maxima, consistent with the empirical
patterns of stronger reasoning models.

Concurrent work, Top-H (Baghaei Potraghloo et al., 2025), formalizes entropy bounds in the decoding
step by solving (approximately) an entropy-constrained minimization problem that upper-bounds
the randomness of the truncated distribution while keeping divergence from the model distribution
small. Our approach uses a complementary perspective: rather than imposing a hard constraint
on the sampling distribution at each decoding step, we optimize the controller so that the model’s
intrinsic token distributions themselves enter phases of controlled exploration and exploitation (via
maximizing/minimizing H at different times). The EMA-based switching mirrors the time-adaptive,
entropy-aware thresholds used in Top-H while operating inside the model (controller optimization)
rather than as an external truncation rule. Empirically and theoretically, both approaches rely on the
same fundamental fact: entropy is a natural, bounded quantity that can be used as a control signal to
trade-off diversity and consistency in generation.

B IMPLEMENTATION DETAILS

Hyperparameters. AdamW optimizer is used to update the controller with no weight decay. A
step size of k = 4 is used as default unless otherwise specified and the best accuracy is reported
over a grid search of 10 learning rates from 5e-5 to 5e-4. The gradient norm of the value-cache
controller is clipped to 1.0. We used β = 0.98 smoothing factor for EMA.
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Algorithm 1 Autoregressive LMM inference with V-Reason

Require: Pretrained LLM fθ; Encoder E ; video frames V; text prompt X ; Sampler SAMPLE(;);
maximum length Lmax; temperature τ ; vocabularyW .

Ensure: Generated text ŷ.
1: function UPDATEV(V)
2: VL

′ ← VL+∆V
||VL+∆V || ||VL|| ▷ add trainable offset and normalize

3: return VL
′

4: end function
5: function OPTIMIZE(ℓN,∆V, k)
6: pk ← SOFTMAX(ℓN )
7: Hk ← −

∑
i∈|W| p

i
k(∆V )log(pik(∆V ))

8: αk =

{
−1 if Hema

k < Hema
peak,

+1 otherwise,
▷ compute alpha

9: Lswitch(pk;∆V) ← −αkHk ▷ compute loss
10: ∆V← argminLswitch(pk;∆V) ▷ update parameters
11: return ∆V
12: end function
13: z1:N ← E(V,X )
14: (ℓN ,KV)← fθ(z1:N ) ▷ prefill: compute logits and full KV cache
15: ŷ1 ← SAMPLE(ℓN , τ)
16: ŷ← [ŷ1]
17: t← 1
18: while t < Lmax and ŷt ̸= [EOS] do
19: V← UPDATEV(V, Iv, π)
20: ∆V← OPTIMIZE(ℓN ,∆V, k)
21: (ℓN+t,KV)← fθ(ŷt |KV)
22: ŷt+1 ← SAMPLE(ℓN+t, τ)
23: ŷ← [ŷ; ŷt+1]
24: t← t+ 1
25: end while
26: return ŷ

Evaluation. Classification accuracy is computed as the proportion of correct answers to the multiple-
choice QA. Mean Relative Accuracy measures the proportion of predictions whose relative error falls
below a series of thresholds ranging from 0.5 to 0.95. The final score is the average accuracy across
all thresholds. For VSI-Bench, we report both classification accuracy and MRA individually, as well
as their average. To compute the overall average accuracy across all six datasets, we divide by seven,
treating the two scores from VSI-Bench separately in addition to the other datasets. When calculating
the average accuracy without considering MRA, we divide by six, using only the accuracy score from
VSI-Bench along with the scores from the remaining datasets.

C INFERENCE TIME AND GPU MEMORY
Table 5 presents the inference time, measured in seconds, of the baseline Qwen-2.5-VL-7B,
V-Reason-7B, V-Reason-7B (Lite), and Video-R1 across the six video reasoning benchmarks.
All experiments were conducted on input videos with maximum video pixels set to 128× 28× 28
and 32 frames temporal length. The reported results are the average over 50 samples.

From the results, it is evident that V-Reason and V-Reason(Lite) consistently outperforms
Video-R1 in terms of wall-clock inference time except for VideoMMMU. Specifically, V-Reason
reduces inference time by approximately 20–67% compared to Video-R1 across the evaluated bench-
marks. For instance, on TempCompass, the inference time decreases from 11.8 seconds per sample
to 3.9 seconds per sample, while on MVBench, the reduction is from 10.7 seconds per sample to 4.1
seconds per sample. Fig. 1(d) shows that V-Reason has the maximum average output token count
for VideoMMMU dataset and so using a step-size of 4 results in more number of optimization steps
as compared to other datasets. This explains the anomaly observed in VideoMMMU results where the
inference time is higher than Video-R1-7B. Further, comparing V-Reason and V-Reason(Lite)
shows that token pruning introduces additional latency that increases the inference time marginally
(+0.23 seconds) as compared to the full version without any pruning. These results highlight that
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Algorithm 2 Autoregressive LMM inference with V-Reason(Lite)

Require: Pretrained LLM fθ; Encoder E ; video frames V; text prompt X ; Sampler SAMPLE(;);
maximum length Lmax; temperature τ ; pruning policy π (e.g., keep ratio r by importance).

Ensure: Generated text ŷ.
1: function PRUNEKV(KV, Iv , π)
2: S ← Score(KV, Iv) ▷ low L2-norm
3: K ← Select(Iv,S, π) ▷ indices to keep among video positions
4: M← {all text positions} ∪ K ▷ full keep-set
5: KV′ ← IndexSelect(KV,M) ▷ prune keys/values along sequence dimension
6: return KV′

7: end function
8: z1:N ← E(V,X )
9: (ℓN ,KV)← fθ(z1:N ) ▷ prefill: compute logits and full KV cache

10: Iv ← {1, . . . , Nv} ▷ positions of video tokens
11: KV← PRUNEKV(KV, Iv, π) ▷ KV-cache pruning for efficiency
12: ŷ1 ← SAMPLE(ℓN , τ)
13: ŷ← [ŷ1]
14: t← 1
15: ŷ← AutoRegressive[ŷ; ŷ1] ▷ inference optimization same as Algorithm 1
16: return ŷ

V-Reason-7B and V-Reason-7B (Lite) achieves a significant efficiency advantage in wall-
clock inference time over the RL-trained model while narrowing the gap to within 0.6% accuracy as
demonstrated in Table 1.

We report the peak GPU memory usage for all models and compare V-Reason(Lite) with
V-Reason to show the benefit of our pruning variant in reducing GPU memory requirements.
Table 6 shows that both V-Reason and V-Reason(Lite) increase the memory overhead slightly
compared to the baseline Qwen-2.5-VL-7B and the Video-R1-7B model as expected due to the
additional memory overhead in optimization. Note that the memory overhead is much lower than
optimizing for all decoder layers in the KV-cache. To further reduce the overhead, we introduced
the lite variant V-Reason(Lite). The table shows that V-Reason(Lite) reduces the average
memory requirement across all datasets by 11.6% as compared to the full variant. In particular,
the memory requirements drop by 20% on datasets with longer output token count length such as
VideoMMMU (see Fig. 1(d)) suggesting the effectiveness of the proposed Lite variant. Notably, the
peak GPU memory of V-Reason(Lite) method is always lower than 32GB for the 7B model (on
the datasets tested). This shows that the proposed lite variant is more suited for relatively smaller
GPUs (e.g., 32GB V100 GPUs) and would not require more expensive GPUs like the Full variant.

Trainable memory computation example for the controller. Let us assume a fixed video token
length of 1920 for analysis. Then the proposed controller introduces a parameter tensor of shape
(1, 4, 1920, 128) for Qwen-2.5-VL-7B model, amounting to N = 983,040 trainable scalars. In FP32,
this corresponds to N × 4 bytes = 3.84 MiB of weights, while in FP16 the footprint is 1.92 MiB.
During training with the AdamW optimizer, additional memory is required for the gradient and
two moment estimates of the same size as the parameters. Thus, in pure FP32 training the memory
becomes 4 × 3.75 = 15.36 MiB (weights + gradients + m + v). Since, the controller is used only
as an additive bias (element-wise addition) the arithmetic cost is negligible (∼ N adds, i.e., < 106

adds). The operation above is tiny compared to the bulk of transformer computation (attention and
large dense projections), which typically entail orders of magnitude more FLOPs per token for typical
hidden sizes and sequence lengths; therefore the controller’s compute overhead is minimal in most
deployments. Note that the total GPU memory required for inference-time optimization will also
include the memory required for storing the activations and gradients of the last decoder layer in the
model as discussed above.

D ANALYSIS ON VIDEO DURATION

We investigate the effect of video duration on the performance of V-Reason using the VideoMME
dataset, which provides annotations for short, medium, and long videos. Specifically, short videos
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Table 5: Inference time (in seconds/sample) of Qwen-2.5-VL-7B, V-Reason-7B (Lite), V-Reason-7B,
and Video-R1-7B across different video reasoning benchmarks. Averaged over 50 samples from each dataset.

Model VSI-Bench VideoMMMU MMVU TempCompass MVBench VideoMME Average

Qwen-2.5-VL-7B 3.80 9.02 6.73 2.86 3.30 4.37 5.01

Video-R1-7B 10.17 11.72 11.61 11.77 10.69 11.42 11.23
V-Reason-7B (Lite) 5.43 [↓46.6%] 14.18 [↑21.0%] 8.86 [↓23.7%] 4.18 [↓64.5%] 4.45 [↓58.4%] 6.64 [↓41.9%] 7.29 [↓35.1%]
V-Reason-7B 5.06 [↓50.2%] 13.83 [↑18.0%] 9.28 [↓20.0%] 3.87 [↓67.1%] 4.13 [↓61.4%] 6.18 [↓45.9%] 7.06 [↓37.1%]

Table 6: Peak GPU memory (in GB) of Qwen-2.5-VL-7B, V-Reason-7B (Lite), V-Reason-7B, and
Video-R1-7B across different video reasoning benchmarks. Averaged over 50 samples from each dataset.
Model VSI-Bench VideoMMMU MMVU TempCompass MVBench VideoMME Average

Qwen-2.5-VL-7B 16.55 16.65 16.60 16.47 16.51 16.53 16.55
Video-R1-7B 16.70 16.74 16.73 16.68 16.70 16.69 16.71

V-Reason-7B 23.95 38.48 29.91 22.32 23.28 25.56 27.25
V-Reason-7B (Lite) 22.41 [↓6.4%] 30.79 [↓20.0%] 25.05 [↓16.2%] 21.45 [↓3.9%] 21.86 [↓6.1%] 22.89 [↓10.5%] 24.08 [↓11.6%]

are less than two minutes in duration, medium videos range from 4 to 15 minutes, and long videos
span 30 to 60 minutes. Table 7 presents a detailed breakdown of the results for both V-Reason and
its Lite variant across these duration categories. The full V-Reason model achieves notable gains,
with a substantial improvement on short videos (+1.8%) and notable gains on medium (+0.8%) and
long (+0.9%) videos. The Lite variant of V-Reason also yields a significant improvement on short
videos (+1.8%), comparable to the full model, but its performance decreases for medium and long
videos. We attribute this decline to pruning, which likely removes important temporal or contextual
details, thereby reducing accuracy for longer content.

E ABLATION STUDIES

In this section, we present additional ablation studies to assess the impact of the proposed pruning
strategy and the hyperparameters used during inference-time optimization, including optimization
step-size (update frequency) and learning rate, and we further analyze the frequency of alpha values
before entropy maxima.

Pruning-Only. Table 8 compares V-Reason to a baseline model that implements pruning only.
This shows that it is effective in maintaining the original performance with only -0.2% decrease on
average across all datasets. Surprisingly, it also has small gains over the baseline on the VSI-Bench
and TempCompass datasets. When V-Reason is combined with pruning, the average gain (without
MRA) increases from −0.2 to 1.3. This shows that the reasoning gains derive mostly from the
inference optimization. Furthermore, Table 8 reports results for V-Reason with a fixed learning
rate of 3e-4 across six datasets. The method maintains the average performance reported in Table 1
under this setting with similar gains observed on VSI-Bench, VideoMMMU, and MMVU datasets
and only a negligible drop in the performance on MVBench, Tempcompass, and VideoMME datasets,
highlighting its robustness to variations in optimization hyperparameters.

Optimization Step-size. Figure 4 shows an ablation on optimization step-size on MMVU dataset. It
shows that accuracy increases with decreasing step-size. Since smaller step-sizes correspond to more
optimization steps, there is a trade-off between efficiency and accuracy (fewer steps lead to faster
inference). Notably, V-Reason outperforms the base model for all step-sizes, demonstrating that
even a few optimization steps can guide the model towards improved reasoning paths.

Alpha Switching. Figure 5 shows the histogram of alpha values before the EMA peak is attained.
V-Reason sacrifices a few micro-exploration steps (α = 1) for a substantially larger number
of micro-exploitation steps (α = −1), suggesting that it pursues more alternative paths during
macro-exploration. This lengthens the macro exploration stage and delays the overall entropy peak.

F LIMITATIONS

Although V-Reason demonstrates consistent improvements across benchmarks, there are certain
limitations. First, our approach relies on the knowledge of the pretrained model to explore alternative
paths during the thinking process and so for certain tasks that are poorly represented in the pretrained
model, V-Reason cannot fully bridge the gap to training-based approaches. For example, on the
regression task on VSI-Bench dataset V-Reason obtains only a modest improvement of +1.4%
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Table 7: Comparison of Qwen-2.5-VL-7B, V-Reason, and V-Reason-7B (Lite) on VideoMME dataset.
The differences with the baseline are denoted in red and green colors.

Model Mean Acc. Short Medium Long

Qwen-2.5-VL-7B 53.7 64.6 50.4 46.1

V-Reason-7B (Lite) 53.5 [–0.2] 66.4 [+1.8] 49.7 [–0.8] 44.3 [–1.8]
V-Reason-7B 54.9 [+1.2] 66.4 [+1.8] 51.2 [+0.8] 47.0 [+0.9]

Table 8: Ablation studies on pruning and learning rates for the variant using 128 px and 32 frames.
Model VSI-Bench VideoMMMU MMVU MVBench TempCompass VideoMME Avg Avg

(Acc/MRA) (mc) (wo sub) (wo mra)

Qwen2.5-VL-7B 28.1 (33.8/22.3) 45.8 61.3 60.7 72.4 53.7 50.0 54.6

Qwen2.5-VL-7B + 50% Pruning 28.2 (34.5/21.9) [+0.1] 45.1 [–0.7] 61.3 [+0.0] 60.0 [–0.7] 72.8 [+0.4] 52.8 [–0.9] 49.8 [–0.2] 54.4 [–0.2]
V-Reason-7B (Lite); (lr: 3e-4) 30.5 (37.3/23.7) [+2.4] 46.7 [+1.6] 64.8 [+3.7] 60.6 [–0.1] 72.3 [–0.1] 53.5 [–0.2] 51.3 [+1.3] 55.9 [+1.3]

as compared to the +16.9% improvement obtained with Video-R1. Second, the Lite variant, while
improving memory efficiency, incurs a measurable drop in accuracy for medium and long-duration
videos, suggesting that pruning may discard valuable temporal information for those cases. Such
limitations can be investigated as future work, as described next.

G FUTURE WORK

To our knowledge, V-Reason is the first work that targets the video reasoning without training
problem. Hence, a number of exciting avenues of future research exist.

First, our entropy-based objective is applied only at inference time; integrating it into model training
could potentially yield stronger gains and is an avenue for potential future research. Other directions
of future research include exploring alternative inference-time metrics and loss functions that can
further enhance reasoning.

Second, as a training-free framework, our method does not leverage task-specific supervision, which
may limit its ability to capture nuanced reasoning strategies compared to reinforcement learning-based
approaches. Hence, a combination of supervised finetuning and inference-time optimization-based
reasoning techniques can also be explored in the future. Additionally, tailored solutions that can
handle longer videos for the Lite variant can also be investigated.

Finally, although our proposed approach is motivated for videos, the idea of entropy-based inference-
time optimization for enhanced reasoning is generic and can be extended to large language models
(LLMs). We conducted a preliminary analysis of the entropy behavior of language models for MATH
reasoning tasks and observed similar trends as the video models. We discuss the details below.

LLM Entropy Curves. Figure 6 shows the entropy curves of Qwen2.5 based LLMs averaged over a
subset of 100 samples on the MATH dataset. It shows that better models have delayed peak and lower
entropy overall. These trends are similar to those observed in the video modality suggesting that the
proposed approach can also be extended to LLMs. We leave this for future work since it requires
non-trivial contributions as the current approach cannot be directly applied due to the absence of
the tokens to tune (akin to video tokens) in the inputs to LLMs. However, it is very exciting to
see similar macro-exploration and macro-exploitation trends with cycles of micro-exploration and
micro-exploitation that cause a delayed entropy maximum for the better model even for LLMs.

H ADDITIONAL QUALITATIVE RESULTS

Figures 7, 8, 9, and 10 shows additional examples where the baseline Qwen-2.5-VL-7B failed to
arrive at the correct solution while V-Reason arrived at the correct answer following an alternative
reasoning path.

Figures 11, 12, 13, and 14 show examples where both the baseline Qwen-2.5-VL-7B and V-Reason
arrive at the correct answer while going through similar or alternative reasoning traces. In all these
examples, V-Reason shows the consistent trend of longer exploration (delayed peak) and lower
overall entropy induced by the micro-exploration and micro-exploitation cycles in our proposed
optimization objective. In particular, Figure 11 shows that V-Reason arrives at the correct solution
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Figure 6: LLM analysis: (a) Entropy of the output distribution averaged over 100 samples of the MATH
dataset (Yang et al., 2024a). Similar to Video LMMs, we see clear macro-exploration and macro-exploitation
phases (having micro-exploration and micro-exploitations) with bigger, more accurate models showing lower
overall entropy (lower and later peak, followed by a lower final entropy during the macro-exploitation). This
shows that these key insights can be adopted for enhancing reasoning in LLMs too in a training-free way using
an inference-time optimization technique.

using fewer output tokens as compared to the baseline as illustrated in Figure 1(d). Interestingly, in
Figure 13 V-Reason uses more output tokens to provide the correct answer as compared to the
baseline. However, V-Reason results in a more confident answer as seen from the lower overall
entropy as compared to the baseline. This trend of higher confidence and lower overall entropy is
seen in all the examples of V-Reason suggesting the effectiveness of our macro-exploitation phase
induced by our proposed objective function.

I SUPPLEMENTAL INFORMATION: LLM USAGE

LLM was used to polish the writing (e.g., grammar, clarity). It was not used for literature retrieval,
discovery of related work, or research ideation.
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Question: Which of the following is the most accurate explanation for why the indicator on the aluminum rod melted first?
A. Aluminum has a higher thermal conductivity than copper, allowing heat to travel faster along the rod. B. Aluminum has a
lower heat capacity per unit volume than copper, so it heats up faster despite having a lower thermal conductivity. C. The
melting point of aluminum is lower than that of copper, causing the indicator to melt sooner. D. Aluminum rods have a
larger cross-sectional area, reducing thermal resistance. E. The experiment demonstrates experimental error; copper should
have heated up faster in theory.

Qwen-2.5-VL-7B:

Let me think through this step by step. The question is asking why the indicator on the aluminum rod melted first.
\n\nFirst, let's consider the options provided:\n- A. This suggests that aluminum's higher thermal conductivity allows
heat to travel faster, which doesn't directly explain why the indicator melted first.\n- B. This option talks about heat
capacity and thermal conductivity, which are important but doesn't directly address why the indicator melted first.\n- C.
This option mentions the melting point of aluminum being lower than copper, which is a key factor. If aluminum melts at a
lower temperature, it would indeed melt first.\n- D. This option talks about cross-sectional area, which is not directly
related to the melting of the indicator.\n- E. This suggests that the experiment might have errors, but the question is
asking for the most accurate explanation, not about the validity of the experiment.\n\nGiven the context of the
experiment, the most accurate explanation is related to the melting point of the materials. Since aluminum has a lower
melting point than copper, the indicator on the aluminum rod would melt first.\n\nTherefore, the correct answer
is:\n\n<answer>C</answer>

V-Reason-7B:

Let me think through this step by step. The question is asking why the indicator on the aluminum rod melted first. The key
points to consider are the thermal conductivity, heat capacity, and melting point of aluminum and copper.\n\n1. **Thermal
Conductivity**: Aluminum has a higher thermal conductivity than copper. This means heat travels faster through aluminum,
but this doesn't directly explain why the indicator melted first. It's more about how quickly the heat is distributed
along the rod.\n\n2. **Heat Capacity**: Heat capacity per unit volume is a factor here. Aluminum has a lower heat capacity
per unit volume compared to copper. This means that for a given amount of heat, aluminum will heat up faster than copper.
This is because it takes less energy to raise the temperature of aluminum compared to copper.\n\n3. **Melting Point**: The
melting point of aluminum is lower than that of copper. However, this is not the primary reason for the indicator melting
first. The melting point is a property of the material and doesn't directly relate to the rate at which the indicator
melts.\n\n4. **Cross-sectional Area**: The cross-sectional area of the rods is not mentioned, so we can't assume it's a
factor here.\n\n5. **Experimental Error**: The experiment is designed to measure the specific heat of metals, and the
observed behavior is consistent with the properties of the materials.\n\nGiven these points, the most accurate explanation
is that aluminum has a lower heat capacity per unit volume than copper, so it heats up faster despite having a lower
thermal conductivity.\n\n<answer>B</answer>

Figure 7: Qualitative result: An example output and comparison with the baseline Qwen-2.5-VL-7B. Black
arrow denotes the shift in the peak demonstrating longer exploration for V-Reason.

Question: What mechanical components are needed to achieve the actions in the video? A. recirculating-ball B. rack-and-
pinion C. worm-and-roller D. planetary gear set E. A, B, and C

Qwen-2.5-VL-7B:

Let me think about this. The video shows a person driving a car, and the steering wheel is being turned. The options
provided are related to different types of steering systems. \n\n- A recirculating-ball system is a type of steering gear
that uses a ball nut and a ball screw to convert the rotary motion of the steering wheel into the linear motion of the
steering shaft.\n- A rack-and-pinion system uses a rack and a pinion gear to convert the rotary motion of the steering
wheel into the linear motion of the steering shaft.\n- A worm-and-roller system is another type of steering gear that uses
a worm gear and a roller to convert the rotary motion of the steering wheel into the linear motion of the steering
shaft.\n\nGiven that the video shows a person driving a car and the steering wheel is being turned, it is likely that the
car is equipped with a rack-and-pinion steering system. This is the most common type of steering system used in modern
cars.\n\n<answer>B</answer>

V-Reason-7B:

Let me think about this. The video shows a person driving a car, and the steering wheel is being turned. The steering
system in a car can be either a recirculating-ball, a rack-and-pinion, or a worm-and-roller. The recirculating-ball and
rack-and-pinion systems are more common in modern cars, while the worm-and-roller system is less common. The
recirculating-ball system is known for its smooth operation and is often used in high-performance cars. The rack-and-
pinion system is more common in everyday cars and is known for its efficiency and ease of use. The worm-and-roller system
is less common and is more complex.\n\nGiven the context of the video, it seems to be a high-performance car, which would
likely use a recirculating-ball system. However, without more specific information, it's difficult to be certain. Let's
break it down: the recirculating-ball system is known for its smooth operation and is often used in high-performance cars,
which matches the context of the video. The rack-and-pinion system is more common in everyday cars and is known for its
efficiency and ease of use. The worm-and-roller system is less common and is more complex.\n\n<answer>E</answer>

Figure 8: Qualitative result: An example output and comparison with the baseline Qwen-2.5-VL-7B. Black
arrow denotes the shift in the peak demonstrating longer exploration for V-Reason.
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Question: What is the explanation of the shown phenomenon? A. Because the plastic rod is charged, after direct contact
with the iron pieces, the iron pieces acquire opposite charges, causing them to attract each other. B. Because the plastic
rod is charged and is not in direct contact with the iron pieces, the iron pieces are inductively charged and carry the
same charge and repel each other. C. Because the air ambient temperature is high, the iron sheets expand and separate when
heated. D. Because the plastic rod has a high temperature, the heat is transferred to the iron sheets causing them to
expand and separate. E. Because the plastic rod is magnetized, and when brought near the iron pieces, induces magnetic
forces causing the iron pieces to attract each other.

Qwen-2.5-VL-7B:

Let me think about this. The video shows a plastic rod being rubbed with a cloth and then brought near a set of iron
pieces inside a bell jar. The iron pieces are observed to move, indicating a force of attraction or repulsion. The text in
the video suggests that the rod is charged and not in direct contact with the iron pieces, which aligns with the concept
of electrostatic induction.\n\nThe phenomenon described in the video is consistent with the principle of electrostatic
induction. When a charged object (in this case, the plastic rod) is brought near uncharged objects (the iron pieces), it
induces a charge on the iron pieces. If the rod is positively charged, it will induce a negative charge on the iron pieces
that are closer to it, and a positive charge on the iron pieces that are farther away. This causes the iron pieces to
repel each other.\n\nGiven this reasoning, the correct explanation is:\n\nB

V-Reason-7B:

Let me think about this. The video shows a plastic rod being brought near iron pieces without touching them, and the iron
pieces move apart. This phenomenon is not due to temperature or magnetism, as the rod is not hot and the iron pieces do
not show magnetic attraction. The rod is not in direct contact with the iron pieces, so it cannot transfer heat or
magnetism. The iron pieces are not expanding due to heat, as they are not in a high-temperature environment. The only
logical explanation is that the rod is charged and induces a charge in the iron pieces, causing them to repel each
other.\n\n<answer>B</answer>

Figure 9: Qualitative result: An example output and comparison with the baseline Qwen-2.5-VL-7B. Black
arrow denotes the shift in the peak demonstrating longer exploration for V-Reason.

Question: Which of the following best explains the phenomenon on the beaker in the video? A. The internal air pressure
increases to about 1.05 atm due to thermal expansion; this pressure increase forces warm air out of the object, cooling
the surrounding air and causing condensation on the beaker. B. The internal air pressure decreases to about 0.90 atm due
to thermal contraction; this pressure drop causes air to flow into the object, warming the surrounding air and preventing
condensation on the beaker. C. The internal air pressure remains at 1 atm because the temperature change is insufficient
to affect the pressure significantly; condensation occurs due to humidity changes in the room. D. The internal air
pressure decreases to about 0.94 atm due to thermal contraction; the pressure difference draws moist ambient air toward
the cold surface of the beaker, where it cools below the dew point and condenses. E. The internal air pressure decreases
slightly, but the condensation is primarily due to evaporation of the cold water cooling the beaker surface below the
ambient dew point.

Qwen-2.5-VL-7B:

Let me think through this step by step. The video shows a beaker with a thermometer inside, and a person is manipulating a
red object, possibly a hot object, near the beaker. The beaker is filled with water, and the thermometer is submerged in
it. The red object is being moved in and out of the water, and the water level in the beaker changes slightly.\n\nThe
phenomenon observed is likely related to the temperature change of the water and the resulting pressure changes. When the
red object is moved into the water, it likely causes a temperature change in the water, which in turn affects the pressure
inside the beaker.\n\nLet's break it down:\n- The red object is likely heated, causing the water to warm up.\n- As the
water warms up, it expands, increasing the internal air pressure in the beaker.\n- This increased pressure forces the warm
air out of the beaker, cooling the surrounding air and causing condensation on the beaker.\n\nGiven this reasoning, the
best explanation is that the internal air pressure increases due to thermal expansion, forcing warm air out and causing
condensation.\n\n<answer>A</answer>

V-Reason-7B:

Let me think through this step by step. The video shows a beaker with a condensation phenomenon occurring on its surface.
Condensation typically happens when the temperature of the beaker is lower than the surrounding air, causing the moisture
in the air to condense on the beaker's surface. This suggests a temperature difference between the beaker and the
surrounding air.\n\nNow, let's consider the options:\n\nA. This option talks about thermal expansion and condensation due
to air pressure changes. However, the video doesn't show any significant change in the beaker's temperature or pressure
that would cause such a phenomenon.\n\nB. This option suggests a decrease in internal air pressure due to thermal
contraction, which would cause air to flow into the object, warming the surrounding air and preventing condensation. This
doesn't align with the observed condensation.\n\nC. This option states that the internal air pressure remains at 1 atm,
which is unlikely given the temperature change. Also, it doesn't explain the condensation.\n\nD. This option explains that
the internal air pressure decreases due to thermal contraction, drawing moist ambient air toward the cold surface of the
beaker, where it cools below the dew point and condenses. This aligns well with the observed condensation.\n\nE. This
option suggests that the condensation is primarily due to evaporation of the cold water cooling the beaker surface, which
doesn't explain the condensation on the beaker's surface.\n\nAfter considering all the options, the most logical
explanation is that the internal air pressure decreases due to thermal contraction, drawing moist ambient air toward the
cold surface of the beaker, where it cools below the dew point and condenses.\n\n<answer>D</answer>

Figure 10: Qualitative result: An example output and comparison with the baseline Qwen-2.5-VL-7B. Black
arrow denotes the shift in the peak demonstrating longer exploration for V-Reason.
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Question: Which of the following best explains the primary benefits brought by the treaty shown in the video? A. By
creating a common market allows free movement of goods, services, capital, and labor, letting members specialize by their
strengths. B. By adopting a single currency to eliminate exchange rate fluctuations and reduce transaction costs among
member states. C. By imposing uniform protectionist tariffs against non-member countries to shield domestic industries
from external competition. D. By integrating fiscal policies to redistribute wealth from richer to poorer member states,
reducing economic disparities. E. By standardizing labor laws and working conditions across member states to prevent a
'race to the bottom' in labor standards.

Qwen-2.5-VL-7B:

Let me think about this. The video seems to be discussing the Treaty of Rome, which is the founding treaty of the European
Economic Community (EEC), the predecessor of the European Union (EU). The treaty aimed to create a common market and
economic union among its member states. \n\nOption A talks about the creation of a common market allowing free movement of
goods, services, capital, and labor, which aligns with the goal of the EEC to integrate economies and facilitate trade
among member states.\n\nOption B mentions adopting a single currency, which was not part of the initial EEC treaty but
became a part of the later European Union.\n\nOption C is about protectionist tariffs, which is not a primary benefit of
the EEC treaty. The EEC aimed for free trade among member states.\n\nOption D is about fiscal policies and wealth
redistribution, which is not a primary focus of the EEC treaty.\n\nOption E is about standardizing labor laws, which was
also not a primary focus of the EEC treaty.\n\nGiven the context of the video and the options provided, the primary
benefit brought by the treaty shown in the video is the creation of a common market allowing free movement of goods,
services, capital, and labor.\n\n<answer>A</answer>

V-Reason-7B:

Let me think about this. The video is about the Treaty of Rome, which is the founding treaty of the European Economic
Community (EEC), the precursor to the European Union (EU). The primary benefits of such a treaty would be related to the
creation of a common market and the facilitation of trade and economic integration among member states.\n\nOption A talks
about the creation of a common market that allows for the free movement of goods, services, capital, and labor. This
aligns well with the goals of the EEC, which aimed to create a single market and a customs union.\n\nOption B mentions
adopting a single currency. While the EU later adopted the euro, this was not part of the original Treaty of
Rome.\n\nOption C is about protectionist tariffs, which is the opposite of what the EEC aimed for, as it sought to create
a free trade area.\n\nOption D is about fiscal policies and wealth redistribution, which is not a primary benefit of the
EEC.\n\nOption E is about standardizing labor laws, which is also not a primary benefit of the EEC.\n\nGiven this
analysis, the best explanation for the primary benefits brought by the treaty shown in the video is:\n\n<answer>A</answer>

Figure 11: Qualitative result: An example output and comparison with the baseline Qwen-2.5-VL-7B. Black
arrow denotes the shift in the peak demonstrating longer exploration for V-Reason.

Question: Which of the following best explains the effect of increasing resistance in the circuit on the voltmeter
readings over time? A. The increased resistance causes the capacitor to charge faster, so the voltmeter reading increases
more rapidly. B. The increased resistance causes the capacitor to charge more slowly initially, but the final voltage
reached is higher. C. The increased resistance has no effect on the charging process or the voltmeter readings since the
battery voltage is constant. D. The increased resistance causes the capacitor to charge more slowly, so the voltmeter
reading increases more slowly. E. The increased resistance causes the capacitor to discharge, causing the voltmeter
reading to decrease over time.

Qwen-2.5-VL-7B:

Let me think about this. When resistance increases in a circuit, it affects the rate at which the capacitor charges. The
voltmeter measures the voltage across the capacitor. If the resistance increases, the current through the circuit
decreases, which means the capacitor charges more slowly. This slower charging process would result in a slower increase
in the voltage reading on the voltmeter.\n\nNow, let's break it down:\n- Increasing resistance means less current flows
through the circuit.\n- Less current means the capacitor charges more slowly.\n- Slower charging means the voltage on the
voltmeter increases more slowly.\n\nGiven these points, the correct answer should reflect that the increased resistance
causes the capacitor to charge more slowly, leading to a slower increase in the voltmeter reading.\n\n<answer>D</answer>

V-Reason-7B:

Let me think about this. Increasing resistance in a circuit generally means that the current flowing through the circuit
will decrease. This is because resistance is a measure of how much a material opposes the flow of electric current. When
the resistance increases, the current decreases, which in turn affects the rate at which the capacitor charges.\n\nNow,
let's consider the effect on the voltmeter readings. The voltmeter measures the voltage across the capacitor. When the
resistance increases, the current decreases, and this means that the capacitor will charge more slowly. As a result, the
voltage across the capacitor will increase more slowly as well.\n\nSo, the correct option should reflect that the
increased resistance causes the capacitor to charge more slowly, leading to a slower increase in the voltmeter
reading.\n\n<answer>D</answer>

Figure 12: Qualitative result: An example output and comparison with the baseline Qwen-2.5-VL-7B. Black
arrow denotes the shift in the peak demonstrating longer exploration for V-Reason.
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Question: Which of the following best explains the effect of increasing resistance in the circuit on the voltmeter
readings over time? A. The increased resistance causes the capacitor to charge faster, so the voltmeter reading increases
more rapidly. B. The increased resistance causes the capacitor to charge more slowly initially, but the final voltage
reached is higher. C. The increased resistance has no effect on the charging process or the voltmeter readings since the
battery voltage is constant. D. The increased resistance causes the capacitor to charge more slowly, so the voltmeter
reading increases more slowly. E. The increased resistance causes the capacitor to discharge, causing the voltmeter
reading to decrease over time.

Qwen-2.5-VL-7B:

Let me think about this. When resistance increases in a circuit, it affects the rate at which the capacitor charges. The
voltmeter measures the voltage across the capacitor. If the resistance increases, the current through the circuit
decreases, which means the capacitor charges more slowly. This slower charging process would result in a slower increase
in the voltage reading on the voltmeter.\n\nNow, let's break it down:\n- Increasing resistance means less current flows
through the circuit.\n- Less current means the capacitor charges more slowly.\n- Slower charging means the voltage on the
voltmeter increases more slowly.\n\nGiven these points, the correct answer should reflect that the increased resistance
causes the capacitor to charge more slowly, leading to a slower increase in the voltmeter reading.\n\n<answer>D</answer>

V-Reason-7B:

Let me think about this. Increasing resistance in a circuit generally means that the current flowing through the circuit
will decrease. This is because resistance is a measure of how much a material opposes the flow of electric current. When
the resistance increases, the current decreases, which in turn affects the rate at which the capacitor charges.\n\nNow,
let's consider the effect on the voltmeter readings. The voltmeter measures the voltage across the capacitor. When the
resistance increases, the current decreases, and this means that the capacitor will charge more slowly. As a result, the
voltage across the capacitor will increase more slowly as well.\n\nSo, the correct option should reflect that the
increased resistance causes the capacitor to charge more slowly, leading to a slower increase in the voltmeter
reading.\n\n<answer>D</answer>

Figure 13: Qualitative result: An example output and comparison with the baseline Qwen-2.5-VL-7B. Black
arrow denotes the shift in the peak demonstrating longer exploration for V-Reason.

Question: If the solution in the video is a salt solution, what is the most likely chemical reaction equation that would
occur in the test tube? A. Cu + Pb(NO3)2 → Cu(NO3)2 + Pb B. Cu + 2AgNO3 → Cu(NO3)2 + 2Ag C. Cu + FeSO4 → CuSO4 + Fe D.
Cu(NO3)2 + Na2S → CuS + 2NaNO3 E. CuCl2 + Na2SO4 → CuSO4 + 2NaCl

Qwen-2.5-VL-7B:

Let me think about this. The video shows a test tube with a wire that appears to be copper, and the solution is a salt
solution. The wire seems to be reacting with the solution, and there's a visible change in the wire's surface, indicating
a chemical reaction.\n\nThe options provided are all potential reactions involving copper. Let's break it down:\n\nA. This
reaction involves copper reacting with lead nitrate to form copper nitrate and lead. This doesn't seem to fit the visual
evidence since the wire doesn't appear to be lead.\n\nB. This reaction involves copper reacting with silver nitrate to
form copper nitrate and silver. This could be a plausible reaction, as silver nitrate is a common reagent in chemistry
labs and could cause a visible change in the wire's surface.\n\nC. This reaction involves copper reacting with iron
sulfate to form copper sulfate and iron. This is less likely because iron is typically more reactive than copper and would
likely be the one to react first.\n\nD. This reaction involves copper nitrate reacting with sodium sulfide to form copper
sulfide and sodium nitrate. This is also less likely because copper nitrate is not typically used in this reaction.\n\nE.
This reaction involves copper chloride reacting with sodium sulfate to form copper sulfate and sodium chloride. This is
less likely because copper chloride is not typically used in this reaction.\n\nGiven the visual evidence and the options
provided, the most likely reaction is the one that involves copper reacting with a silver nitrate solution, which is
option B.\n\n<answer>B</answer>

V-Reason-7B:

Let me think about this. The video shows a test tube with a wire that appears to be copper, and the solution is a salt
solution. The reaction seems to involve the copper wire dissolving and forming a precipitate at the bottom of the tube.
\n\nOption A involves copper reacting with lead nitrate to form copper nitrate and lead. This doesn't seem to fit the
observation in the video as there's no lead nitrate present.\n\nOption B involves copper reacting with silver nitrate to
form copper nitrate and silver. This could be a possibility as silver nitrate is a common salt solution and could react
with copper.\n\nOption C involves copper reacting with iron(II) sulfate to form copper(II) sulfate and iron. This is less
likely as iron(II) sulfate is not a common salt solution and the reaction would not form a precipitate at the
bottom.\n\nOption D involves copper(II) nitrate reacting with sodium sulfide to form copper sulfide and sodium nitrate.
This could be a possibility as copper(II) nitrate is a common salt solution and could react with sodium sulfide to form a
precipitate.\n\nOption E involves copper(II) chloride reacting with sodium sulfate to form copper(II) sulfate and sodium
chloride. This is less likely as sodium sulfate is not a common salt solution and the reaction would not form a
precipitate at the bottom.\n\nGiven the observation of a precipitate forming at the bottom of the tube, option B seems the
most likely as it involves a common salt solution (silver nitrate) and could form a precipitate (silver) at the bottom of
the tube.\n\n<answer>B</answer>

Figure 14: Qualitative result: An example output and comparison with the baseline Qwen-2.5-VL-7B. Black
arrow denotes the shift in the peak demonstrating longer exploration for V-Reason.
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